Computing a simple stochastic OLG example

Timothy Kam

January 17, 2018

Computation

Results

Now we consider the RCE in a specific example with closed-form solution.

Example

Assume that the capital depreciation rate $\delta = 0$. Let, as before,

 $A_t F(K_t, L_t) = A_t K_t^{\alpha} N_t^{1-\alpha}, \quad \alpha \in (0, 1),$

and

$$u(c) = \ln(c),$$

and

 $\ln(A_{t+1}) = (1 - \gamma) \ln(A) + \gamma \ln(A_t) + \epsilon_{t+1}, \quad A > 0, \gamma \in (0, 1).$

Example (continued)

We showed, consumer's optimal intertemporal consumption *contingent plans* satisfy:

$$\frac{1}{c_t^t} = \beta \mathbb{E}_{\mu, t} \left\{ \left[\frac{1 + r_{t+1}}{c_{t+1}^t} \right] \right\}$$

Using consumer's budget constraints, and using capital market clearing condition, this can be re-written as

$$\frac{1}{w_t - (1+n)k_{t+1}} = \beta \mathbb{E}_{\mu, t} \left\{ \left[\frac{1 + r_{t+1}}{(1 + r_{t+1})(1+n)k_{t+1}} \right] \right\}$$

Example (continued)

Simplify RHS to get

$$\frac{1}{w_t - (1+n)k_{t+1}} = \beta \mathbb{E}_{\mu,t} \left\{ \left[\frac{1}{(1+n)k_{t+1}} \right] \right\}$$

so the only stochastic element $r_{t+1} := r_{t+1}(k_{t+1}, A_{t+1})$ dropped out from the first-order condition.

Since k_{t+1} is known at time t, the condition also holds "within" the expectations operator:

$$\frac{1}{w_t - (1+n)k_{t+1}} = \beta \left[\frac{1}{(1+n)k_{t+1}}\right]$$

Example (continued)

Re-arrange for k_{t+1} , we have

$$k_{t+1} = \frac{\beta}{(1+n)(1+\beta)} w_t.$$

Looks just like its deterministic cousin we derived earlier, hey?

Not quite! Now, from firm's optimal labor demand (??), we have

 $w_t = (1 - \alpha) A_t k_t^{\alpha}$

which suffers from random perturbations by A_t ! So we have a stochastic difference equation solution to the RCE of this example:

$$k_{t+1} = \frac{\beta}{(1+n)(1+\beta)} (1-\alpha) \mathbf{A}_t k_t^{\alpha}.$$

Example

The solution to this economy's RCE beginning from (k_0, A_0) is a contingent allocation plan (sequence of decision functions), $(k_{t+1}, c_t, c_{t+1}^t, y_t)(k_t, A_t)$ supported by state-contingent prices $(w_t, r_t)(k_t, A_t)$ that satisfies

- $k_{t+1} = \frac{\beta}{(1+n)(1+\beta)}(1-\alpha)A_tk_t^{\alpha}$, • $w_t = (1-\alpha)A_tk_t^{\alpha}$, • $r_t = \alpha A_tk_t^{\alpha-1} - \delta$, • $c_t = w_t - (1+n)k_{t+1}$, • $c_{t+1}^t = (1+r_{t+1})k_{t+1}$,

 - $i_t = s_t = (1+n)k_{t+1}$ (investment flow).

for every possible random history of TFP levels, $\{A_t\}_{t=0}^\infty$.

Exercise

- Choose your parameter values $(\alpha, \beta, \delta, A, \gamma, M)$.
- Generate a random sequence $\{A_t\}_{t=0}^\infty$ according to the law of motion

 $\ln(A_{t+1}) = (1-\gamma)\ln(A) + \gamma\ln(A_t) + \epsilon_{t+1} \equiv H(A_t, \epsilon_{t+1}).$

For example, assume $\epsilon_{t+1} \sim U[-(1-\gamma)\ln(A), \ln(M)].$

- To generate a uniformly distributed random variable on an interval [a, b], use the Excel command, RAND()*(b - a) + a. [More on Excel]
- Use Excel or any spreadsheet software to calculate a sample RCE path using these equations:

$$\begin{array}{l} \bullet k_{t+1} = \frac{\beta}{(1+n)(1+\beta)} (1-\alpha) A_t k_t^{\alpha} \equiv G(A_t,k_t), \\ \bullet w_t = (1-\alpha) A_t k_t^{\alpha}, \\ \bullet r_t = \alpha A_t k_t^{\alpha-1} - \delta, \\ \bullet c_t = w_t - (1+n) k_{t+1}, \\ \bullet c_{t+1}^t = (1+r_{t+1}) k_{t+1}, \\ \bullet y_t = A_t k_t^{\alpha}, \\ \bullet i_t = s_t = (1+n) k_{t+1} \text{ (investment flow)}. \end{array}$$

Computation

Pseudocode

A stylized recipe for computing a sample stochastic RCE path. First generate a random sample stored as a vector, $\mathbf{e} = \{\epsilon_t\}_{t=0}^T$.

Example (Matlab)

If \mathbf{e} is to be a uniformly distributed random vector, use the following command:

Figure: Generating a vector containing T + 1 observations of uniform random variables.

Computation

Pseudocode

ALGORITHM 1. Simulating sample RCE outcomes

```
Input: (A_0, k_0), Equilibrium system: (H, G), random sample
            \omega \leftarrow \{\exp(\epsilon_t)\}_{t=0}^T, Null vectors \mathbf{A}(:) = \mathbf{k}(:) = \mathbf{0}_{(T+1)\times 1}.
set
      \mathbf{A}(1) \leftarrow A_0\mathbf{k}(1) \leftarrow k_0t \leftarrow 1
end
while t \leq T do
        \mathbf{A}(t+1) \leftarrow H[\mathbf{A}(t), \omega(t+1)]
       \mathbf{k}(t+1) \leftarrow G[\mathbf{A}(t), \mathbf{k}(t)]
       set
       | t \leftarrow t + 1
        end
```

Output: Random sample RCE path $\{k_{t+1}\}_{t=0}^T \leftarrow \mathbf{k}$

Figure: Sample RCE path for capital now appears as random fluctuations around the deterministic steady state where $k_{t+1} = g(A_t, k_t)$, because A_t is a stochastic process.

Figure: Sample RCE path for other variables which are functions of (A_t, k_t) .

Figure: Sample RCE path for same variables transformed as percentage deviations from respective steady state values. E.g. $\ln(y_t/y_{ss})$.

Figure: Sample distribution of RCE outcomes over time. By law of large numbers this approaches the stationary distribution (with probability 1).

Outline	Concrete example	Computation	Results

Table: Mean for simulated data and steady state values

Variable	simulated	theory
s_t	1.632	1.693
w_t	3.280	3.402
$c_{young,t}$	1.648	1.710
y_t	5.125	5.316

Notice that the simulated RCE means are quite close to the theoretically calculated steady state values? If I increase the simulation sample observations, they should be the same, w.p.1.

Remark

- Example illustrates techniques in stochastic modeling and a simple economic (OLG) theory for generating theory consistent "business cycles".
- Should we take this model seriously as a quantitative model of real business cycles?
- Not quite. OLG model designed for long run analysis. Notion of a "period t" is very long. At business cycle frequencies, a period t usually is one quarter (3 months).
- Mismatch between theory and measurement. Need a model with more refined notion of generations. Or more generally, assume infinitely lived agents.
- Given calibration of parameters, model does not generate realistic business cycle facts

- In principle, as we saw, the model implies an equilibrium statistical process.
- We saw the sample distribution of the model variables.
- We can use these simulated data to calculate the relevant business cycle statistics – e.g. standard deviations, means, correlations with output (measure of procyclicality), etc.
- But this model is no good, quantitatively.

Table: Standard deviations for simulated data

Variable	std	
i_t	0.635	
w_t	1.277	
$c_{young,t}$	0.642	
y_t	1.995	