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Overview

This lecture:

Restate the recursive competitive equilibrium (RCE)
characterization

Welfare properties of RCE in the OLG model (in a steady
state)

(Steady state) Competitive equilibrium of OLG model
may/may not be Pareto optimal
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Definition

Given k0, a RCE is a price system {wt(kt), rt(kt)}∞t=0 and allocation
{kt+1(kt), c

t
t(kt), c

t
t+1(kt)}∞t=0 that satisfies, for each t ∈ N:

1 Consumer’s lifetime utility maximization:

β
Uc(c

t
t+1)

Uc(ctt)
=

1

1 + rt+1
, and, ctt +

ctt+1

(1 + rt+1)
= wt · 1.

2 Firm’s profit maximization:

f ′(kt) = rt + δ, and, f(kt)− ktf ′(kt) = wt.

3 Market clearing in the credit/capital market:

(1 + n)kt+1 = (wt · 1− ctt).
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Recursive competitive equilibrium ...

Young-age budget constraint:

ctt = wt − st
= [f(kt)− ktf ′(kt)]− st ≡ w(kt)− st

and old-age budget constraint:

ctt+1 = (1 + rt+1)st

= [fk(kt+1) + 1− δ]st ≡ R(kt+1) · st
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Recursive competitive equilibrium (cont’d) ...

Let Rt+1 := R(kt+1). From Euler equation, denote for all t ∈ N:

E(st, wt, Rt+1) ≡ −Uc(wt − st) + βRt+1Uc(Rt+1st) = 0,

In words, we have:

a necessary sequence of FOC’s (Euler equations)
characterizing the optimal savings trajectory {st}∞t=0 (of all
generations);

Given (i.e. taken as parametric by consumer) market terms of
trades (wt, Rt+1), this Euler equation implicitly defines the
solution as some function s : R2

++ 7→ R+ such that
st = s(wt, Rt+1).



Outline Overview Competitive equilibrium Long-run Optimality

Recall assumptions on primitive U :

U is continuous on R+

For all c > 0, Uc(c) > 0, and, Ucc(c) < 0 exist

limc↘0 Uc(c) = +∞

Then the function (w,R) 7→ s(w,R), such that

st = s(wt, Rt+1),

is well-defined and sw(w,R), and sR(w,R) exist for every
(w,R) ∈ R2

++.
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Definition (IES)

Given per-period utility function U , the intertemporal elasticity of
substitution, evaluated at a point c is

σ(c) = − Uc(c)

Ucc(c) · c

Remark: Note similarity to Arrow-Pratt measure of relative risk
aversion? How?



Outline Overview Competitive equilibrium Long-run Optimality

Recursive competitive equilibrium (cont’d) ...

From Euler equation (dropping t subscripts),

E(s, w,R) ≡ −Uc(w − s) + βRUc(Rs) = 0,

We can use the implicit function theorem to obtain:

Esds+ Ewdw + ERdR = 0,

where:

Es := ∂E(s, w,R)/∂s = Ucc(w − s) + βR2Ucc(Rs) < 0

Ew := ∂E(s, w,R)/∂w = −Ucc(w − s) > 0

ER := ∂E(s, w,R)/∂R = βUc(Rs)
[
1− 1

σ(Rs)

]
S 0



Outline Overview Competitive equilibrium Long-run Optimality

Hold R constant (i.e. dR = 0), we have

sw(w,R) = −Ew
Es

=

[
1 +

βR2Ucc(Rs)

Ucc(w − s)

]−1
∈ (0, 1);

i.e. the marginal propensity to save out of w (equiv. lifetime
income) is

endogenous, and depends (in general) on aggregate state
(relative prices) (w,R),

is bounded in the set (0, 1). Why? Because (ctt, c
t
t+1) are

normal goods!



Outline Overview Competitive equilibrium Long-run Optimality

Hold w constant (i.e. dw = 0), we have

sR(w,R) = −ER
Es

= − βUc(Rs)[1− 1/σ(Rs)]

Ucc(w − s) + βR2Ucc(Rs)
S 0, if σ(Rs) S 0.

i.e. effect of the rate of return on capital on saving:

is ambiguous ...

depends on σ(Rs) S 0, and therefore on specification of U .
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Given an optimal savings rule (equiv. consumption demand
functions), s(w(kt), R(kt+1)), a RCE sequence of allocations
{st, ctt, ctt+1, kt+1}t∈N satisfies for all t ∈ N:

st = s(w(kt), R(kt+1)),

(1 + n)kt+1 = st,

ctt = w(kt)− st, and

ctt+1 = R(kt+1)st,

for k0 > 0 given.
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Specific Example

Exercise

1 Derive, and therefore, show that s(w,R) does not depend on
R in the case of U(c) = ln(c).

2 Explain why this is the case. Hint: You have learned this in
consumer theory from intermediate microeconomics.

3 Depict this in the (ctt, c
t+1
t )-space using the geometric devices

of indifference and budget sets.
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Optimality: steady states

Focus: long-run steady state.

We’ll study this in three successive components:

Long-run feasibility

Long-run maximal consumption: the Golden Rule

Optimal long-run: Diamond’s “Golden Age”
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Long-run feasibility I

Consider a long run (steady state), where per worker capital is k.

Definition (Long-run feasibility)

A steady-state k ≥ 0 is feasible if net production at k is
non-negative:

φ(k) := f(k)− (δ + n)k ≥ 0.

Notes:

f(k): gross output at a steady state k

(δ + n)k: claims on gross output at k
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Long-run feasibility II

Recall assumption:

f continuous on R+

fk(k) > 0, fkk(k) < 0 for all k ∈ R+

f satisfies Inada conditions ... (What are they?!)
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Long-run feasibility III

Since fk(k) > 0, fkk(k) < 0 for all k ≥ 0, then:

φk(k) = fk(k)− (δ + n) S 0,

φkk(k) = fkk(k) < 0;

so that φ(k) is strictly concave.

Also note that:

φ(0) = f(0) ≥ 0,

limk↘0 φk(k) = limk↘0 fk(k)− (δ + n), and

limk↗∞ φk(k) = limk↗∞ fk(k)− (δ + n).
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Long-run feasibility IV

Long-run feasible sets: If ...

F1. φk(k) > 0, for all k ≥ 0, any k ∈ R+ is long-run feasible.

F2. φk(k) < 0, for all k ≥ 0, and,

(a) if f(0) > 0, then [0, k̂] is long-run feasible, for some

k̂ ∈ (0,∞).
(b) if f(0) = 0, then only k = 0 is long-run feasible.

F3. φ(k) non-monotonic. ...

... And ∃k ∈ (0,∞) s.t. f(k̃)− (δ + n)k̃ = 0, then any
k ∈ (0, k), is long-run feasible.
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Long-run feasibility V

Exercise (Long-run-feasible sets of k)

Given assumptions about fk > 0, fkk < 0, and f(0) ≥ 0, illustrate
(in two respective diagrams) the graphs of:

1 k 7→ f(k) and k 7→ (δ + n)k, and therefore,

2 k 7→ φ(k);

and show the corresponding long-run feasible sets, if F1, F2, or F3
were to hold.
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Long-run feasibility VI

Exercise (Long-run-feasible sets of k (cont’d))
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The golden rule I

Consider cases:

F1. Iff limk↗∞ fk(k) ≥ (δ + n)⇒ limk↗∞ φk(k) > 0, then φ is
strictly increasing on R+.

F2. If φk(k) > 0, then φ is strictly decreasing. Not interesting —
largest net production is at k = 0: φ(0) ≥ 0.

F3. If limk↗∞ fk(k) < (δ + n) < fk(0) then φ is non-monotonic:

There exists a unique kGR ∈ (0,∞) such that φk(kGR) = 0:
i.e. net production is maximized, and

φ is increasing on (0, kGR) and decreasing on (kGR,∞).
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The golden rule II

Proposition (Golden rule)

Assume production function f such that
limk↗∞ fk(k) < (δ + n) < fk(0).

Then there exists a unique kGR ∈ (0,∞) such that
φk(kGR) = fk(kGR)− (δ + n) = 0: i.e. net production is
maximized.
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The golden rule III

Exercise

Illustrate the last proposition using appropriate diagrams.
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The golden rule IV

Exercise

Show that the regularity condition
limk↗∞ fk(k) < (δ + n) < fk(0) does not apply to the
Cobb-Douglas family of functions f(·;α), α ∈ (0, 1).

Remark: However, in Cobb-Douglas f(k;α) = kα case with
α ∈ (0, 1), kGR ∈ (0,∞) still exists.
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The golden rule V

Remarks: In any steady state k,

... given regularity conditions on U and f ,

... we know from the RCE conditions, (st, c
t
t, c

t
t+1) must converge

to a well-defined limit (s, cy, co):

savings function, s = s(w(k), R(k)),

consumption (young), cy = w(k)− s, and

consumption (old), co = R(k)s.
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The golden rule VI

Therefore, the golden-rule proposition implies that there is a steady
state golden-rule consumption level for each young and old agent,
(cyGR, c

o
GR).

... The Solow-Swan golden-rule, per-se, says nothing about Pareto
optimality in the long run! Why?

... What of steady state optimality in this model? Relation to the
golden rule in this model?
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Golden Age: optimal steady state I

Optimal steady state: “The Golden Age” (Diamond, 1965)

Suppose we have the condition:
limk↗∞ fk(k) < (δ + n) < fk(0). This is guaranteed by the
Inada conditions on f .

On a steady state path, kt = k, ctt = cy and ctt+1 = co for all t.

The resource constraint is then:
f(k) = (δ + n)k + cy + (1 + n)−1co.
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Golden Age: optimal steady state II

A Pareto allocation of consumption across periods of life
along the steady state trajectory solves:

max
(k,cy ,co)∈R3

+

{
U(cy)+βU(co) : f(k) = (δ+n)k+cy+(1+n)−1co

}

This is still an intertemporal allocation problem, albeit
stationary.
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Golden Age: optimal steady state III

Characterization of Pareto-optimal steady state

1 The maximum feasible net production is attained when:

φk(k) := fk(k)− (δ + n) = 0⇒ k = kGR.

(i.e. this is just the same condition characterizing the
golden-rule per-worker capital stock, at steady state!)

2 Given assumption on f such that case F3 prevails, we then
know kGR ∈ (0,∞).
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Golden Age: optimal steady state IV

3 Also, the maximum of U(c) + βU(co) s.t.
φ(k) = cy + (1 + n)−1co is characterized by:

φ(kGR) = cyGR +
coGR

1 + n
,

and,

Uc(c
y
GR) = β(1 + n)Uc(c

o
GR).
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Golden Age: optimal steady state V

Proposition (Optimal steady state)

Given assumptions above, a unique Pareto-optimal steady state
exists: kGR satisfying

fk(kGR)− (δ + n) = 0; (Golden rule)

and cyGR and coGR, respectively, satisfy

φ(kGR) = cyGR +
coGR

1 + n
, (Resource constraint)

and,

Uc(c
y
GR) = β(1 + n)Uc(c

o
GR). (Euler equation)
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Optimal vs. CE arbitrage I

If we decentralized previous Pareto planning problem ...

Given relative price (btw. young-vs-old consumption) Rt+1,
each consumer’s optimal decisions (ctt, c

t
t+1) satisfy

Uc(c
t
t) = βRt+1Uc(c

t
t+1). (Euler eqn: at CE)
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Optimal vs. CE arbitrage II

Optimal arbitrage: If Rt+1 = (1 + n) for all t, i.e.
Samuelson’s (1958) “biological return” equals market terms of
trade btw (ctt, c

t
t+1), so there is a triple (cy, co, k) such that

Uc(c
y) = β(1 + n)Uc(c

o),

and the actual value of lifetime expenditure on consumption
(for each agent) is

cy +
co

1 + n
= w(k) = f(k)− fk(k)k

= f(k)− (δ + n)k.
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Optimal vs. CE arbitrage III

But ... at R = 1 + n, market clearing at steady state requires

(1 + n)k = s[w(k), 1 + n] = w(k)− cy.

If we impose the optimal allocation, setting k = kGR, then
cy = cyGR and co = coGR, in general,

(1 + n)kGR 6= s[w(kGR), 1 + n].

Optimal steady-state path, in general, not equivalent to the
competitive equilibrium steady-state path.
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Optimal vs. CE arbitrage IV

Proposition (Optimal allocation and life-cycle no-arbitrage)

The optimal steady state path (kGR, c
y
GR, c

o
GR) satisfies:

the decentralized no-arbitrage condition of each consumer
where the return on saving is R = fk(kGR) + (1− δ) = 1 + n;
and

her life-cycle income is w(kGR) = f(kGR)− fk(kGR)kGR.

But her choice of saving is generally not equal to the level of
Pareto-optimal invest: s[w(kGR), 1 + n] 6= (1 + n)kGR.
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Optimal vs. CE arbitrage V

To prove this, all we need is a counter-example.

Example (δ = 1)

Let U(c) = ln(c) and f(k) = kα. Then

kGR = [α/(1 + n)]1/(1−α)

φ(kGR) = w(kGR) = (1− α)kαGR
cyGR = (1 + β)−1φ(kGR)

coGR = (1 + β)−1[(1 + n)β]φ(kGR)

s[w(kGR), 1 + n] = β(1 + β)−1φ(kGR).

Show that at a steady state k = kGR it is possible that it is not
consistent with a RCE.
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Optimal vs. CE arbitrage VI

Example (cont’d)

Observe that:

s[w(kGR), 1 + n] S (1 + n)kGR,

if and only if:

β

(1 + β)
(1− α)kαGR S αkαGR ⇔

β

1 + β
S

α

1− α
.

Given α, if β too large (agent’s too patient), then savings exceeds
golden rule capital stock. Only in special case where
β/(1 + β) = α/(1− α), do the two equal.
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Optimal vs. CE arbitrage VII

What is the reasoning behind RCE allocation not necessarily being
an optimal one?

FWT states that a competitive equilibrium is also Pareto
optimal, as long as there exist complete markets, agents are
price-takers and preferences are locally non-satiated.

This steady state analysis showed a breakdown of what is
known as the First Welfare Theorem (FWT).
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Optimal vs. CE arbitrage VIII

The problem here is that in a CE each generation’s old agents
do not care about the next generation’s young.

The former eats up the total dividend from and the remainder
of their capital stock.

Competitive agents do not internalize the need of moving
resources intertemporally across infinitely far generations.

They only move private resources across time (through
savings) insofar as it maximizes their own lifetime utilities.
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Optimal vs. CE arbitrage IX

A planner in an optimal steady state cares about every
generation and maximizes the net production subject to that
being feasible; and

Planner allocates consumption intertemporally for each
generation according to the biological rate of exchange.

Pareto planner internalizes the effect of shifting resources
across infinite sequences of generations; and

planner’s optimal allocation is feasible w.r.t. resource
constraint that holds over all t ∈ N.
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Over/under accumulation of capital I

At a steady state k̄ of an RCE:

If fk(k̄) > δ + n, then k̄ < kGR (under-accumulation).

If fk(k̄) < δ + n, then k̄ > kGR (over-accumulation).
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Over/under accumulation of capital II

Note in both cases, for a given k̄,

the maximum life-cycle utility satisfies:
Uc(c

y) + β(1 + n)Uc(c
o), given net production fixed at φ(k̄),

... but ...

the life-cycle utility at the competitive steady state satisfies:
Uc(c̄

y) = β[fk(k̄) + 1− δ]Uc(c̄o).
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Over/under accumulation of capital III

Implications:

Competitive equilibrium over- or under-accumulation of k̄ on
a steady state path is not Pareto optimal.

E.g. if k̄ > kGR (over-accumulation):

possible to increase total consumption by reducing k to yield
total resources per period φ(k) forever.
If k reduces discretionarily to kGR at some period, total
consumption will be φ(k) + (k − kGR)(1 + n) > φ(k). Total
consumption in that period rises.
For continuation periods, the surplus is now φ(kGR) forever.
But by definition of golden rule, φ(kGR) > φ(k). So total
consumption forever is maximized.
Therefore total consumption for every generation can be
increased at all dates by moving k towards kGR.
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