Short Run: AS-AD and Stabilization Policy

T. Kam

File: 06-cycles_as-ad_apps.tex Read: Mishkin 12-13

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Outline of Talk

2 Motivation

- Using the AS-AD Model
- 4 Empirical Consistency of AS-AD
- 5 Modern Monetary Policy
- 6 Mental Stickers

æ

ヘロト 人間ト 人造ト 人造トー

Where we are so far

- **AD**: An *even more convenient representation* of IS-MP-PC with systematic or conventional monetary policy
 - With conventional MP, we can combine the IS curve and the MP curve to get AD curve. Thus AD is not just "aggregate demand":
 - * It summarizes product market equilibrium (aggregate demand equal supply) and MP behavior!
 - These two conditions imply a downward sloping AD restriction on the outcomes for (Y_t, π_t)!

Where we are so far

- **AD**: An *even more convenient representation* of IS-MP-PC with systematic or conventional monetary policy
 - With conventional MP, we can combine the IS curve and the MP curve to get AD curve. Thus AD is not just "aggregate demand":
 - * It summarizes product market equilibrium (aggregate demand equal supply) *and* MP behavior!
 - * These two conditions imply a downward sloping AD restriction on the outcomes for $(Y_t, \pi_t)!$

人口 医水黄 医水黄 医水黄素 化甘油

Where we are so far

- **AD**: An *even more convenient representation* of IS-MP-PC with systematic or conventional monetary policy
 - With conventional MP, we can combine the IS curve and the MP curve to get AD curve. Thus AD is not just "aggregate demand":
 - * It summarizes product market equilibrium (aggregate demand equal supply) and MP behavior!
 - * These two conditions imply a downward sloping AD restriction on the outcomes for $(Y_t, \pi_t)!$

Where we are so far

- **AD**: An *even more convenient representation* of IS-MP-PC with systematic or conventional monetary policy
 - With conventional MP, we can combine the IS curve and the MP curve to get AD curve. Thus AD is not just "aggregate demand":
 - * It summarizes product market equilibrium (aggregate demand equal supply) and MP behavior!
 - ★ These two conditions imply a downward sloping AD restriction on the outcomes for $(Y_t, \pi_t)!$

Where we are so far

• **AS:** Phillips Curve (PC) can be reinterpreted as an aggregate supply (AS) curve.

- This summarizes firms pricing behavior in response to demand conditions dictating their supply of products, which in turn affects their labor hiring conditions and profit margin.
 - What about capital? In the short run's one period, capital is a fixed factor.
- AD and AS curves represent an intuitive version of the short-run model that describes the evolution of the economy in a single graph.

э

イロト 不得 トイヨト イヨト

Where we are so far

- **AS:** Phillips Curve (PC) can be reinterpreted as an aggregate supply (AS) curve.
 - This summarizes firms pricing behavior in response to demand conditions dictating their supply of products, which in turn affects their labor hiring conditions and profit margin.
 - * What about capital? In the short run's one period, capital is a fixed factor.
 - AD and AS curves represent an intuitive version of the short-run model that describes the evolution of the economy in a single graph.

Where we are so far

- **AS:** Phillips Curve (PC) can be reinterpreted as an aggregate supply (AS) curve.
 - This summarizes firms pricing behavior in response to demand conditions dictating their supply of products, which in turn affects their labor hiring conditions and profit margin.
 - * What about capital? In the short run's one period, capital is a fixed factor.
 - AD and AS curves represent an intuitive version of the short-run model that describes the evolution of the economy in a single graph.

Where we are so far

- **AS:** Phillips Curve (PC) can be reinterpreted as an aggregate supply (AS) curve.
 - This summarizes firms pricing behavior in response to demand conditions dictating their supply of products, which in turn affects their labor hiring conditions and profit margin.
 - * What about capital? In the short run's one period, capital is a fixed factor.
 - AD and AS curves represent an intuitive version of the short-run model that describes the evolution of the economy in a single graph.

What's new #1

Applying the theory: Using the AS-AD model to analyse different events over the business cycle.

- supply-side shocks
- demand-side shocks
- policy changes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What's new #1

Applying the theory: Using the AS-AD model to analyse different events over the business cycle.

- supply-side shocks
- demand-side shocks
- policy changes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What's new #1

Applying the theory: Using the AS-AD model to analyse different events over the business cycle.

- supply-side shocks
- demand-side shocks
- policy changes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What's new #2

Empirical plausibility of theory:

• Does the (IS-PC-MP) AS-AD model fit the facts?

- ▶ is the *simple MPR* empirically/quantitatively plausible?
- does the overall model predict factual *inflation-output loops* observed in the business cycle?

(日) (四) (日) (日) (日)

What's new #2

Empirical plausibility of theory:

- Does the (IS-PC-MP) AS-AD model fit the facts?
 - is the simple MPR empirically/quantitatively plausible?
 - does the overall model predict factual *inflation-output loops* observed in the business cycle?

(日) (四) (日) (日) (日)

What's new #2

Empirical plausibility of theory:

- Does the (IS-PC-MP) AS-AD model fit the facts?
 - is the simple MPR empirically/quantitatively plausible?
 - does the overall model predict factual *inflation-output loops* observed in the business cycle?

人口 医水黄 医水黄 医水黄素 化甘油

What's new #3

Praxis: How does modern monetary policy actually behave, in the real world?

- Why do we model policy behaviour as some MP *rule* that must be followed?
 - What if people have rational expectations? What is it?
 - Importance of rules versus discretion if people's expectations are forward-looking.
 - Managing (rational) expectations and monetary policy—-inflation targeting.

What's new #3

Praxis: How does modern monetary policy actually behave, in the real world?

- Why do we model policy behaviour as some MP *rule* that must be followed?
 - What if people have rational expectations? What is it?
 - Importance of rules versus discretion if people's expectations are forward-looking.
 - Managing (rational) expectations and monetary policy—-inflation targeting.

What's new #3

Praxis: How does modern monetary policy actually behave, in the real world?

- Why do we model policy behaviour as some MP *rule* that must be followed?
 - What if people have rational expectations? What is it?
 - Importance of rules versus discretion if people's expectations are forward-looking.
 - Managing (rational) expectations and monetary policy—-inflation targeting.

What's new #3

Praxis: How does modern monetary policy actually behave, in the real world?

- Why do we model policy behaviour as some MP *rule* that must be followed?
 - What if people have rational expectations? What is it?
 - Importance of rules versus discretion if people's expectations are forward-looking.
 - Managing (rational) expectations and monetary policy—-inflation targeting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Questions of interest

- The AS/AD curves are static, one-period snapshots of what would be a sequence of short run events over time.
- How to study *dynamics* of *inflation* and *short run output*/unemployment when:
 - an exogenous (supply-side) inflation shock hits
 - an exogenous (demand-side) shock hits
 - ▶ an exogenous shift to monetary policy
- What should central banks do if expectations are not adaptive, but "sophisticated"? In the real world, businesses (especially financial markets) are very clued-in! Not completely naive in expectations.

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Questions of interest

- The AS/AD curves are static, one-period snapshots of what would be a sequence of short run events over time.
- How to study *dynamics* of *inflation* and *short run output*/unemployment when:
 - ▶ an exogenous (supply-side) inflation shock hits
 - an exogenous (demand-side) shock hits
 - an exogenous shift to monetary policy
- What should central banks do if expectations are not adaptive, but "sophisticated"? In the real world, businesses (especially financial markets) are very clued-in! Not completely naive in expectations.

Questions of interest

- The AS/AD curves are static, one-period snapshots of what would be a sequence of short run events over time.
- How to study *dynamics* of *inflation* and *short run output*/unemployment when:
 - ► an exogenous (supply-side) inflation shock hits
 - an exogenous (demand-side) shock hits
 - an exogenous shift to monetary policy
- What should central banks do if expectations are not adaptive, but "sophisticated"? In the real world, businesses (especially financial markets) are very clued-in! Not completely naive in expectations.

Questions of interest

- The AS/AD curves are static, one-period snapshots of what would be a sequence of short run events over time.
- How to study *dynamics* of *inflation* and *short run output*/unemployment when:
 - ► an exogenous (supply-side) inflation shock hits
 - an exogenous (demand-side) shock hits
 - an exogenous shift to monetary policy
- What should central banks do if expectations are not adaptive, but "sophisticated"? In the real world, businesses (especially financial markets) are very clued-in! Not completely naive in expectations.

Questions of interest

- The AS/AD curves are static, one-period snapshots of what would be a sequence of short run events over time.
- How to study *dynamics* of *inflation* and *short run output*/unemployment when:
 - an exogenous (supply-side) inflation shock hits
 - an exogenous (demand-side) shock hits
 - an exogenous shift to monetary policy
- What should central banks do if expectations are not adaptive, but "sophisticated"? In the real world, businesses (especially financial markets) are very clued-in! Not completely naive in expectations.

Questions of interest

- The AS/AD curves are static, one-period snapshots of what would be a sequence of short run events over time.
- How to study *dynamics* of *inflation* and *short run output*/unemployment when:
 - an exogenous (supply-side) inflation shock hits
 - an exogenous (demand-side) shock hits
 - an exogenous shift to monetary policy
- What should central banks do if expectations are not adaptive, but "sophisticated"? In the real world, businesses (especially financial markets) are very clued-in! Not completely naive in expectations.

Applications

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Overall IS-MP-PC model

• IS curve:

$$Y_t = \bar{a} - \bar{b} \cdot r_t$$

• MP curve/rule:

$$r_t = \bar{r} + \lambda \cdot \pi_t$$

• (Naive expectations) Phillips Curve ($\pi_t^e := \pi_{t-1}$):

$$\pi_t - \pi_{t-1} = -\omega(u_t - \bar{u}_t) + \bar{\rho}_t$$

• Okun's law:

$$u_t - \bar{u}_t = -\frac{1}{2}(Y_t - \bar{Y}_t)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Overall IS-MP-PC model

• IS curve:

$$Y_t = \bar{a} - \bar{b} \cdot r_t$$

• MP curve/rule:

$$r_t = \bar{r} + \lambda \cdot \pi_t$$

• (Naive expectations) Phillips Curve ($\pi_t^e := \pi_{t-1}$):

$$\pi_t - \pi_{t-1} = -\omega(u_t - \bar{u}_t) + \bar{\rho}_t$$

• Okun's law:

$$u_t - \bar{u}_t = -\frac{1}{2}(Y_t - \bar{Y}_t)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Overall IS-MP-PC model

• IS curve:

$$Y_t = \bar{a} - \bar{b} \cdot r_t$$

• MP curve/rule:

$$r_t = \bar{r} + \lambda \cdot \pi_t$$

• (Naive expectations) Phillips Curve ($\pi_t^e := \pi_{t-1}$):

$$\pi_t - \pi_{t-1} = -\omega(u_t - \bar{u}_t) + \bar{\rho}_t$$

• Okun's law:

$$u_t - \bar{u}_t = -\frac{1}{2}(Y_t - \bar{Y}_t)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Overall IS-MP-PC model

• IS curve:

$$Y_t = \bar{a} - \bar{b} \cdot r_t$$

• MP curve/rule:

$$r_t = \bar{r} + \lambda \cdot \pi_t$$

• (Naive expectations) Phillips Curve ($\pi_t^e := \pi_{t-1}$):

$$\pi_t - \pi_{t-1} = -\omega(u_t - \bar{u}_t) + \bar{\rho}_t$$

Okun's law:

$$u_t - \bar{u}_t = -\frac{1}{2}(Y_t - \bar{Y}_t)$$

3

イロト 不得 トイヨト イヨト

Re-expressed as AS-AD model

AD curve: Combined IS-MP-Monetary-Policy Rule is:

$$\pi_t = -\frac{1}{\bar{b}\lambda}Y_t + \frac{\bar{a} - \bar{b}\bar{r}}{\bar{b}\lambda}$$

AS curve: *is* Phillips Curve + Okun:

$$\pi_t = \pi_{t-1} + \underbrace{\frac{\omega}{2}}_{\equiv \lambda} (Y_t - \bar{Y}_t) + \bar{\rho}_t; \qquad \omega > 0, \, \bar{\rho} \stackrel{\geq}{\leqslant} 0.$$

Two relations, AS and AD, that can be graphed in (Y, π) -space. **Know How to Derive:** What shifts AS? What shifts AD?

Background AS-AD

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP.

A D > A P > A D > A D >

Background AS-AD

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP

A D > A P > A D > A D >

Background AS-AD

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP

A D > A P > A D > A D >
Background AS-AD

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP

A D > A P > A D > A D >

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP

(日)

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP.

A D > A P > A D > A D >

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP.

(日)

Checkpoint!

- The vertical axis represents inflation.
- The horizontal axis represents short-run output.
- The AS curve slopes upward
 - implication of price-setting behavior of firms embodied in the Phillips curve
- The AD curve slopes downward
 - Due to the response of policymakers to inflation.
 - derived from IS and MP.

(日)

The AD-AS Representation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Event 1: Supply-side Inflation Shock

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Event #1: An inflation shock, t = 1

• Date 0: Suppose (without loss of generality) the economy begins in steady state $(Y_0, \pi_0) = (\bar{Y}, \bar{\pi})$, where we set $\bar{\pi} = 0$. Point a.

► $\bar{\rho}_0 = 0!$

- **Date 1:** ... economy is hit with a one-time increase in the price of oil.
 - Origin of shock: the exogenous variable at date $t=1;~ar{
 ho}_1>0$
 - ▶ ... is positive for *one period*

Event #1: An inflation shock, t = 1

• Date 0: Suppose (without loss of generality) the economy begins in steady state $(Y_0, \pi_0) = (\bar{Y}, \bar{\pi})$, where we set $\bar{\pi} = 0$. Point a.

• $\bar{\rho}_0 = 0!$

- **Date 1:** ... economy is hit with a one-time increase in the price of oil.
 - Origin of shock: the exogenous variable at date $t=1;\; ar{
 ho}_1>0$
 - ▶ ... is positive for *one period*

3

イロト 不得 トイヨト イヨト

Event #1: An inflation shock, t = 1

• Date 0: Suppose (without loss of generality) the economy begins in steady state $(Y_0, \pi_0) = (\bar{Y}, \bar{\pi})$, where we set $\bar{\pi} = 0$. Point a.

• $\bar{\rho}_0 = 0!$

- **Date 1:** ... economy is hit with a one-time increase in the price of oil.
 - Origin of shock: the exogenous variable at date t = 1: $\bar{\rho}_1 > 0$
 - ▶ ... is positive for *one period*

Event #1: An inflation shock, t = 1

• Date 0: Suppose (without loss of generality) the economy begins in steady state $(Y_0, \pi_0) = (\bar{Y}, \bar{\pi})$, where we set $\bar{\pi} = 0$. Point a.

• $\bar{\rho}_0 = 0!$

. . .

- **Date 1:** ... economy is hit with a one-time increase in the price of oil.
 - Origin of shock: the exogenous variable at date t = 1: $\bar{\rho}_1 > 0$
 - ▶ ... is positive for *one period*

Event #1: An inflation shock, t = 1

• Date 0: Suppose (without loss of generality) the economy begins in steady state $(Y_0, \pi_0) = (\bar{Y}, \bar{\pi})$, where we set $\bar{\pi} = 0$. Point a.

• $\bar{\rho}_0 = 0!$

- **Date 1:** ... economy is hit with a one-time increase in the price of oil.
 - Origin of shock: the exogenous variable at date t = 1: $\bar{\rho}_1 > 0$
 - ... is positive for *one period*

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- Given price level P_0 and inflation expectations $\pi_1^e = \pi_0$ are fixed at date t = 1, ...
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- Given price level P_0 and inflation expectations $\pi_1^e = \pi_0$ are fixed at date $t = 1, \ldots$
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- ► Given price level P₀ and inflation expectations π^e₁ = π₀ are fixed at date t = 1, ...
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- Given price level P_0 and inflation expectations $\pi_1^e = \pi_0$ are fixed at date $t = 1, \ldots$
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- ► The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- ▶ Given price level P_0 and inflation expectations $\pi_1^e = \pi_0$ are fixed at date t = 1, ...
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- ▶ Given price level P_0 and inflation expectations $\pi_1^e = \pi_0$ are fixed at date t = 1, ...
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Transmission mechanism:

- ▶ Given price level P_0 and inflation expectations $\pi_1^e = \pi_0$ are fixed at date t = 1, ...
- ► Cost-push inflation shock p
 ₁ > 0 forces producers to raise price level P₁. (Why? Economic story ...)
- Shows up in actual inflation via AS relation:

$$\pi_1 = \pi_0 + \gamma (Y_1 - \bar{Y}) + \bar{\rho};$$

- The AS0 curve will shift up to AS1 as a result. Movement up along AD curve to point b at outcome (Y_1, π_1) .
 - ★ Why?
 - * What's happening on the aggregate demand side of product market?

Event #1: An inflation shock, t = 1

• Result in one period:

- ▶ Real economic activity $(Y_0 \searrow Y_1)$ and $(u_0 \nearrow u_1)$ [Deduce by Okun's Law]
- accompanied by rising inflation $(\pi_0 \nearrow \pi_1)$.

Event #1: An inflation shock, t = 1

• Result in one period:

- ▶ Real economic activity $(Y_0 \searrow Y_1)$ and $(u_0 \nearrow u_1)$ [Deduce by Okun's Law]
- accompanied by rising inflation $(\pi_0 \nearrow \pi_1)$.

Event #1: An inflation shock, t = 1

• Result in one period:

- ▶ Real economic activity $(Y_0 \searrow Y_1)$ and $(u_0 \nearrow u_1)$ [Deduce by Okun's Law]
- accompanied by rising inflation $(\pi_0 \nearrow \pi_1)$.

Event #1: An inflation shock, t = 1

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Event #1: After the shock, t = 2Note that in Date 2:
 - $\bar{\rho}_2 = 0$ (and forevermore ...)

Two pieces of clues:

• Inflation expectations at date t=2 is still higher than actual inflation originally.

$$\pi_2^e = \pi_1 > \pi_1^e = \pi_0 = \bar{\pi}.$$

• Actual inflation is now

$$\pi_2 = \pi_1 + \lambda (Y_2 - \bar{Y}) + 0$$
$$< \pi_1$$

since $Y_2 < Y!$ In words: since at date t = 2, products are demanded *and* produced below its long run capacity, firms are lowering their prices in the aggregate. So the growth in price level slows down.

• Geometrically, AS2 must have been shift down from AS1.

- Event #1: After the shock, t = 2Note that in Date 2:
 - $\bar{\rho}_2 = 0$ (and forevermore ...)

Two pieces of clues:

• Inflation expectations at date t = 2 is still higher than actual inflation originally.

$$\pi_2^e = \pi_1 > \pi_1^e = \pi_0 = \bar{\pi}.$$

Actual inflation is now

$$\pi_2 = \pi_1 + \lambda (Y_2 - \bar{Y}) + 0$$

• Geometrically, AS2 must have been shift down from AS1.

- Event #1: After the shock, t = 2Note that in Date 2:
 - $\bar{\rho}_2 = 0$ (and forevermore ...)

Two pieces of clues:

• Inflation expectations at date t = 2 is still higher than actual inflation originally.

$$\pi_2^e = \pi_1 > \pi_1^e = \pi_0 = \bar{\pi}.$$

Actual inflation is now

$$\pi_2 = \pi_1 + \lambda (Y_2 - \bar{Y}) + 0$$
$$< \pi_1$$

since $Y_2 < \overline{Y}!$ In words: since at date t = 2, products are demanded *and* produced below its long run capacity, firms are lowering their prices in the aggregate. So the growth in price level slows down.

• Geometrically, AS2 must have been shift down from AS1,

- Event #1: After the shock, t = 2Note that in Date 2:
 - $\bar{\rho}_2 = 0$ (and forevermore ...)
- Two pieces of clues:
 - Inflation expectations at date t = 2 is still higher than actual inflation originally.

$$\pi_2^e = \pi_1 > \pi_1^e = \pi_0 = \bar{\pi}.$$

Actual inflation is now

$$\pi_2 = \pi_1 + \lambda (Y_2 - \bar{Y}) + 0$$
$$< \pi_1$$

since $Y_2 < \overline{Y}!$ In words: since at date t = 2, products are demanded *and* produced below its long run capacity, firms are lowering their prices in the aggregate. So the growth in price level slows down.

• Geometrically, AS2 must have been shift down from AS1.

Event #1: Transition dynamics, $t \geq 2$

High inflation created by the oil shock

↓ Raises expected inflation above long run rate

 \Downarrow

One-off shock: inflation expectation adjust downwards, adapting slowly. Slows the adjustment of the AS curve back to its initial position

↓ Inflation slowly falls.

Eventually the model will return to its original steady state.

Event #1: Transition dynamics, t = 2

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Event #1: Transition dynamics, t = 3

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Event #1: Transition dynamics, $t \ge 1$

- In the absence of any more shocks, dynamics is governed by our long run model (e.g. Solow-Swan type dynamics).
- Movement of the AS curve follows the principle of transition dynamics.
- Transition Dynamics:
 - Movement back to the steady state is fastest when the economy is furthest from its steady state.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Event #1: Transition dynamics, $t \ge 1$

- In the absence of any more shocks, dynamics is governed by our long run model (e.g. Solow-Swan type dynamics).
- Movement of the AS curve follows the principle of transition dynamics.
- Transition Dynamics:
 - Movement back to the steady state is fastest when the economy is furthest from its steady state.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Event #1: Transition dynamics, $t \ge 1$

- In the absence of any more shocks, dynamics is governed by our long run model (e.g. Solow-Swan type dynamics).
- Movement of the AS curve follows the principle of transition dynamics.
- Transition Dynamics:
 - Movement back to the steady state is fastest when the economy is furthest from its steady state.

(日)

Event #1: Transition dynamics, $t \ge 1$

- In the absence of any more shocks, dynamics is governed by our long run model (e.g. Solow-Swan type dynamics).
- Movement of the AS curve follows the principle of transition dynamics.
- Transition Dynamics:
 - Movement back to the steady state is fastest when the economy is furthest from its steady state.

Event #1: Summary

In summary, the impact of a price shock

- raises inflation directly.
- Even a single period shock raises expected inflation.
- Inflation remains higher for a longer period of time.
- It takes a prolonged slump to get expectations back to normal.
- The economy suffers stagflation in the meantime.

・ロト ・ 同ト ・ ヨト ・ ヨト

Event #1: Summary

In summary, the impact of a price shock

- raises inflation directly.
- Even a single period shock raises expected inflation.
- Inflation remains higher for a longer period of time.
- It takes a prolonged slump to get expectations back to normal.
- The economy suffers stagflation in the meantime.

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト
Event #1: Summary

In summary, the impact of a price shock

- raises inflation directly.
- Even a single period shock raises expected inflation.
- Inflation remains higher for a longer period of time.
- It takes a prolonged slump to get expectations back to normal.
- The economy suffers stagflation in the meantime.

э

イロト 不得 トイヨト イヨト

Event #1: Summary

In summary, the impact of a price shock

- raises inflation directly.
- Even a single period shock raises expected inflation.
- Inflation remains higher for a longer period of time.
- It takes a prolonged slump to get expectations back to normal.
- The economy suffers stagflation in the meantime.

э

イロト 不得 トイヨト イヨト

Event #1: Summary

In summary, the impact of a price shock

- raises inflation directly.
- Even a single period shock raises expected inflation.
- Inflation remains higher for a longer period of time.
- It takes a prolonged slump to get expectations back to normal.
- The economy suffers stagflation in the meantime.

イロト イボト イヨト イヨト 三日

Event 2: Disinflation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Applications Event #2: Disinflation

Suppose the economy begins in steady state and policymakers decide to lower the target rate of inflation or raise (\bar{r})

• The AD curve Shifts down. Why?

► The new MP rule calls for an increase in interest rates

Applications Event #2: Disinflation

Suppose the economy begins in steady state and policymakers decide to lower the target rate of inflation or raise (\bar{r})

- The AD curve Shifts down. Why?
 - ► The new MP rule calls for an increase in interest rates

Event #2: Disinflation

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Event #2: Disinflation

• The economy must now move to its new steady state.

- When actual output equals potential output, the new steady state is at the new target rate of inflation.
 - So AS shifts down
 - ► Why?

Event #2: Disinflation

- The economy must now move to its new steady state.
- When actual output equals potential output, the new steady state is at the new target rate of inflation.
 - So AS shifts downWhy?

(日) (四) (日) (日) (日)

Event #2: Disinflation

- The economy must now move to its new steady state.
- When actual output equals potential output, the new steady state is at the new target rate of inflation.
 - So AS shifts down
 - ► Why?

Event #2: Disinflation

- The economy must now move to its new steady state.
- When actual output equals potential output, the new steady state is at the new target rate of inflation.
 - So AS shifts down
 - Why?

Event #2: Disinflation

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Event #2: Disinflation

... Why?

- The downward change in the rate of inflation causes the AS curve to shift during the following period.
- Firms adjust their expectation for inflation to account for the new lower inflation rate.
- The AS curve shifts down.

э

イロト 不得 トイヨト イヨト

Event #2: Disinflation

... Why?

- The downward change in the rate of inflation causes the AS curve to shift during the following period.
- Firms adjust their expectation for inflation to account for the new lower inflation rate.
- The AS curve shifts down.

3

イロト 不得 トイヨト イヨト

Event #2: Disinflation

... Why?

- The downward change in the rate of inflation causes the AS curve to shift during the following period.
- Firms adjust their expectation for inflation to account for the new lower inflation rate.
- The AS curve shifts down.

э

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Event #2: Disinflation: transition

• As long as the inflation rate is still above the target (or r_t is below \bar{r}):

- ▶ The central bank keeps actual output below potential.
- Firm respond in their pricing behaviour ... (How?)
- ► The inflation rate falls further.
- Eventually, the economy will rest in its new steady state.

Event #2: Disinflation: transition

- As long as the inflation rate is still above the target (or r_t is below \bar{r}):
 - > The central bank keeps actual output below potential.
 - Firm respond in their pricing behaviour ... (How?)
 - ► The inflation rate falls further.
- Eventually, the economy will rest in its new steady state.

Event #2: Disinflation: transition

- As long as the inflation rate is still above the target (or r_t is below \bar{r}):
 - The central bank keeps actual output below potential.
 - Firm respond in their pricing behaviour ... (How?)
 - ► The inflation rate falls further.
- Eventually, the economy will rest in its new steady state.

Event #2: Disinflation: transition

- As long as the inflation rate is still above the target (or r_t is below \bar{r}):
 - The central bank keeps actual output below potential.
 - Firm respond in their pricing behaviour ... (How?)
 - The inflation rate falls further.
- Eventually, the economy will rest in its new steady state.

Event #2: Disinflation: transition

- As long as the inflation rate is still above the target (or r_t is below \bar{r}):
 - ▶ The central bank keeps actual output below potential.
 - Firm respond in their pricing behaviour ... (How?)
 - The inflation rate falls further.
- Eventually, the economy will rest in its new steady state.

Event #2: Disinflation: transition

• Note that if the classical dichotomy holds in the short run,

- the AD and AS curves would reach the new steady state immediately.
- no transitions.
- If there is sticky inflation, a recession is needed to adjust expectations down.
- More details: Do this week's tutorial exercise!

э

イロト 不得 トイヨト イヨト

Event #2: Disinflation: transition

- Note that if the classical dichotomy holds in the short run,
 - the AD and AS curves would reach the new steady state immediately.
 - no transitions.
- If there is sticky inflation, a recession is needed to adjust expectations down.
- More details: Do this week's tutorial exercise!

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Event #2: Disinflation: transition

- Note that if the classical dichotomy holds in the short run,
 - the AD and AS curves would reach the new steady state immediately.
 - no transitions.
- If there is sticky inflation, a recession is needed to adjust expectations down.
- More details: Do this week's tutorial exercise!

э

イロト 不得 トイヨト イヨト

Event #2: Disinflation: transition

- Note that if the classical dichotomy holds in the short run,
 - the AD and AS curves would reach the new steady state immediately.
 - no transitions.
- If there is sticky inflation, a recession is needed to adjust expectations down.
- More details: Do this week's tutorial exercise!

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Event #2: Disinflation: transition

- Note that if the classical dichotomy holds in the short run,
 - the AD and AS curves would reach the new steady state immediately.
 - no transitions.
- If there is sticky inflation, a recession is needed to adjust expectations down.
- More details: Do this week's tutorial exercise!

э

イロト 不得 トイヨト イヨト

Event 3: Demand-side Shock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Event #3: Positive AD shock

• Example:

- net export demand boom, \bar{NX}
- \blacktriangleright rise in consumer sentiments about the long term income/consumption, \bar{C}
- ▶ and etc. ... anything in the composite \bar{a} term in IS. (Think about other sources of AD shock ...)

3

ヘロト 人間 ト 人 ヨト 人 ヨト

Event #3: Positive AD shock

• Example:

- net export demand boom, \bar{NX}
- \blacktriangleright rise in consumer sentiments about the long term income/consumption, \bar{C}
- ▶ and etc. ... anything in the composite \bar{a} term in IS. (Think about other sources of AD shock ...)

Event #3: Positive AD shock

- Example:
 - net export demand boom, \bar{NX}
 - \blacktriangleright rise in consumer sentiments about the long term income/consumption, \bar{C}
 - ▶ and etc. ... anything in the composite ā term in IS. (Think about other sources of AD shock ...)

Event #3: Positive AD shock

- Example:
 - net export demand boom, \bar{NX}
 - \blacktriangleright rise in consumer sentiments about the long term income/consumption, \bar{C}
 - ▶ and etc. ... anything in the composite ā term in IS. (Think about other sources of AD shock ...)

人口 医水黄 医水黄 医水黄素 化甘油

Event #3: Positive AD shock

- $\bullet\,$ Suppose there is a temporary increase in the aggregate demand parameter \bar{a}
 - The AD curve will shift out.
 - Prices increase and therefore inflation increases. Why? (Story behind AS)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Event #3: Positive AD shock

- $\bullet\,$ Suppose there is a temporary increase in the aggregate demand parameter \bar{a}
 - The AD curve will shift out.
 - Prices increase and therefore inflation increases. Why? (Story behind AS)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Event #3: Positive AD shock

- $\bullet\,$ Suppose there is a temporary increase in the aggregate demand parameter \bar{a}
 - The AD curve will shift out.
 - Prices increase and therefore inflation increases. Why? (Story behind AS)

Event #3: Positive AD shock

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Event #3: Positive AD shock

• As inflation has increased, firms expect higher inflation in the future.

- Thus, the AS curve shifts upward over time.
 - The inflation rate associated with zero short-run output rises.
 - The AS curve shifts until the economy has higher inflation and zero short-run output.

・ロト ・ 同ト ・ ヨト ・ ヨト

Event #3: Positive AD shock

- As inflation has increased, firms expect higher inflation in the future.
- Thus, the AS curve shifts upward over time.
 - The inflation rate associated with zero short-run output rises.
 - The AS curve shifts until the economy has higher inflation and zero short-run output.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト
Event #3: Positive AD shock

- As inflation has increased, firms expect higher inflation in the future.
- Thus, the AS curve shifts upward over time.
 - ► The inflation rate associated with zero short-run output rises.
 - The AS curve shifts until the economy has higher inflation and zero short-run output.

・ロト ・ 同ト ・ ヨト ・ ヨト

Event #3: Positive AD shock

- As inflation has increased, firms expect higher inflation in the future.
- Thus, the AS curve shifts upward over time.
 - > The inflation rate associated with zero short-run output rises.
 - The AS curve shifts until the economy has higher inflation and zero short-run output.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Event #3: Positive AD shock

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Event #3: Positive AD shock

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Event #3: Positive AD shock

- The aggregate demand shock implies that booms are matched by recessions.
 - ▶ The economy benefits from a boom but inflation rises.
 - The way to reduce inflation is by a recession.
- The costs of inflation:
 - The economy would have been better staying at its original steady state than going through this cycle.

3

イロト 不得 トイヨト イヨト

Event #3: Positive AD shock

- The aggregate demand shock implies that booms are matched by recessions.
 - The economy benefits from a boom but inflation rises.
 - The way to reduce inflation is by a recession.
- The costs of inflation:
 - The economy would have been better staying at its original steady state than going through this cycle.

(日) (四) (日) (日) (日)

Event #3: Positive AD shock

- The aggregate demand shock implies that booms are matched by recessions.
 - The economy benefits from a boom but inflation rises.
 - The way to reduce inflation is by a recession.
- The costs of inflation:
 - The economy would have been better staying at its original steady state than going through this cycle.

Event #3: Positive AD shock

- The aggregate demand shock implies that booms are matched by recessions.
 - The economy benefits from a boom but inflation rises.
 - The way to reduce inflation is by a recession.
- The costs of inflation:
 - The economy would have been better staying at its original steady state than going through this cycle.

Event #3: Positive AD shock

- The aggregate demand shock implies that booms are matched by recessions.
 - The economy benefits from a boom but inflation rises.
 - The way to reduce inflation is by a recession.
- The costs of inflation:
 - The economy would have been better staying at its original steady state than going through this cycle.

Event #3: Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Event #3: Remarks

- In theory, monetary policy can be used to insulate an economy from aggregate demand shocks.
- The monetary policy rule we specified here responds only to inflation and not output changes.
- What if it responded to short run output fluctuation?
- Or both inflation and short run output?
- Taylor Rule: see Mishkin Ch.12 Appendix.

э

イロト 不得 トイヨト イヨト

Event #3: Remarks

- In theory, monetary policy can be used to insulate an economy from aggregate demand shocks.
- The monetary policy rule we specified here responds only to inflation and not output changes.
- What if it responded to short run output fluctuation?
- Or both inflation and short run output?
- Taylor Rule: see Mishkin Ch.12 Appendix.

Event #3: Remarks

- In theory, monetary policy can be used to insulate an economy from aggregate demand shocks.
- The monetary policy rule we specified here responds only to inflation and not output changes.
- What if it responded to short run output fluctuation?
- Or both inflation and short run output?
- Taylor Rule: see Mishkin Ch.12 Appendix.

Event #3: Remarks

- In theory, monetary policy can be used to insulate an economy from aggregate demand shocks.
- The monetary policy rule we specified here responds only to inflation and not output changes.
- What if it responded to short run output fluctuation?
- Or both inflation and short run output?
- Taylor Rule: see Mishkin Ch.12 Appendix.

Event #3: Remarks

- In theory, monetary policy can be used to insulate an economy from aggregate demand shocks.
- The monetary policy rule we specified here responds only to inflation and not output changes.
- What if it responded to short run output fluctuation?
- Or both inflation and short run output?
- Taylor Rule: see Mishkin Ch.12 Appendix.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Fitting the Fed Funds Rate

Questions:

- What are the empirical predictions of the short-run model when monetary policy is dictated by an inflation-based policy rule?
- Empirical plausibility: Is the model "realistic enough"?

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Fitting the Fed Funds Rate

Questions:

- What are the empirical predictions of the short-run model when monetary policy is dictated by an inflation-based policy rule?
- Empirical plausibility: Is the model "realistic enough"?

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Inflation-output loops

Model implies: When plotting inflation on the vertical axis and output on the horizontal axis ...

- The economy will follow counterclockwise loops to shocks in the economy.
- Positive short-run output leads to rising inflation.
- A rise in inflation leads policymakers to reduce output.

Data: What does the data show?

イロト イボト イヨト イヨト 三日

Inflation-output loops

Model implies: When plotting inflation on the vertical axis and output on the horizontal axis ...

- The economy will follow counterclockwise loops to shocks in the economy.
- Positive short-run output leads to rising inflation.
- A rise in inflation leads policymakers to reduce output.

Data: What does the data show?

Inflation-output loops

Model implies: When plotting inflation on the vertical axis and output on the horizontal axis ...

- The economy will follow counterclockwise loops to shocks in the economy.
- Positive short-run output leads to rising inflation.
- A rise in inflation leads policymakers to reduce output.

Data: What does the data show?

Inflation-output loops

Inflation-output loops

Inflation-output loops

Conclusion:

- In reality, we don't observe "demand" or "supply" side shocks directly. Without a model, we'll never know.
- Our model places a *structural interpretation* on reality, and calls them "demand" and "supply" shocks. Thus ...
 - The observed counter-clockwise loop in the data can be accounted for by demand-side shocks being dominant (i.e. shifts to a terms in IS).
- We studied this just now in AD-AS ...
 - If demand side shocks like NX dominate overall, the AD-AS model does imply such a cyclical behavior of outout and inflation movement.

Inflation-output loops

Conclusion:

- In reality, we don't observe "demand" or "supply" side shocks directly. Without a model, we'll never know.
- Our model places a *structural interpretation* on reality, and calls them "demand" and "supply" shocks. Thus ...
 - ► The observed counter-clockwise loop in the data can be accounted for by demand-side shocks being dominant (i.e. shifts to ā terms in IS).
- We studied this just now in AD-AS ...
 - If demand side shocks like NX dominate overall, the AD-AS model does imply such a cyclical behavior of outout and inflation movement.

Inflation-output loops

Conclusion:

- In reality, we don't observe "demand" or "supply" side shocks directly. Without a model, we'll never know.
- Our model places a *structural interpretation* on reality, and calls them "demand" and "supply" shocks. Thus ...
 - ► The observed counter-clockwise loop in the data can be accounted for by demand-side shocks being dominant (i.e. shifts to ā terms in IS).
- We studied this just now in AD-AS ...
 - If demand side shocks like NX dominate overall, the AD-AS model does imply such a cyclical behavior of outout and inflation movement.

人口 医水黄 医水黄 医水黄素 化甘油

Inflation-output loops

Conclusion:

- In reality, we don't observe "demand" or "supply" side shocks directly. Without a model, we'll never know.
- Our model places a *structural interpretation* on reality, and calls them "demand" and "supply" shocks. Thus ...
 - ► The observed counter-clockwise loop in the data can be accounted for by demand-side shocks being dominant (i.e. shifts to ā terms in IS).
- \bullet We studied this just now in AD-AS \ldots
 - If demand side shocks like NX dominate overall, the AD-AS model does imply such a cyclical behavior of outout and inflation movement.

Inflation-output loops

Conclusion:

- In reality, we don't observe "demand" or "supply" side shocks directly. Without a model, we'll never know.
- Our model places a *structural interpretation* on reality, and calls them "demand" and "supply" shocks. Thus ...
 - ► The observed counter-clockwise loop in the data can be accounted for by demand-side shocks being dominant (i.e. shifts to ā terms in IS).
- We studied this just now in AD-AS ...
 - If demand side shocks like NX dominate overall, the AD-AS model does imply such a cyclical behavior of outout and inflation movement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The short-run model captures many features of monetary policy.

- Central banks are now more explicit about policies and targets.
- More sophisticated monetary policy rules that use short-run output create results similar to the simpler model.
 - The simple policy rule we used implicitly takes into account short-run output (c.f. the Taylor rule in Appendix Ch.12).
- Inflation rates in industrialized countries have been well behaved for the last 25 years.

・ロト ・ 同ト ・ ヨト ・ ヨト

- The short-run model captures many features of monetary policy.
- Central banks are now more explicit about policies and targets.
- More sophisticated monetary policy rules that use short-run output create results similar to the simpler model.
 - The simple policy rule we used implicitly takes into account short-run output (c.f. the Taylor rule in Appendix Ch.12).
- Inflation rates in industrialized countries have been well behaved for the last 25 years.

・ロト ・ 同ト ・ ヨト ・ ヨト

- The short-run model captures many features of monetary policy.
- Central banks are now more explicit about policies and targets.
- More sophisticated monetary policy rules that use short-run output create results similar to the simpler model.
 - ► The simple policy rule we used implicitly takes into account short-run output (c.f. the Taylor rule in Appendix Ch.12).
- Inflation rates in industrialized countries have been well behaved for the last 25 years.

э

イロト 不得 トイヨト イヨト

- The short-run model captures many features of monetary policy.
- Central banks are now more explicit about policies and targets.
- More sophisticated monetary policy rules that use short-run output create results similar to the simpler model.
 - ► The simple policy rule we used implicitly takes into account short-run output (c.f. the Taylor rule in Appendix Ch.12).
- Inflation rates in industrialized countries have been well behaved for the last 25 years.

э

イロト 不得 トイヨト イヨト

- The short-run model captures many features of monetary policy.
- Central banks are now more explicit about policies and targets.
- More sophisticated monetary policy rules that use short-run output create results similar to the simpler model.
 - ► The simple policy rule we used implicitly takes into account short-run output (c.f. the Taylor rule in Appendix Ch.12).
- Inflation rates in industrialized countries have been well behaved for the last 25 years.

イロト イボト イヨト イヨト 三日

Great Moderation

FIGURE 13.19 Inflation in the OECD, 1970-2009

Macroeconomics, 2nd Ed Copyright © 2011 W. W. Norton & Company, Inc.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国 - 例

Rules versus Discretion

- Phrase from title of a Nobel-prize winning paper by Finn Kydland and Ed Prescott
- **Question:** Is there any benefit to sticking to a systematic policy?
- The "time consistency" problem:
 - Even though an policymaker plans a particular policy, ...
 - ... once the future comes, they have incentives to renege on their promises.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Rules versus Discretion

- Phrase from title of a Nobel-prize winning paper by Finn Kydland and Ed Prescott
- **Question:** Is there any benefit to sticking to a systematic policy?
- The "time consistency" problem:
 - ▶ Even though an policymaker plans a particular policy, ...
 - ... once the future comes, they have incentives to renege on their promises.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rules versus Discretion

- Phrase from title of a Nobel-prize winning paper by Finn Kydland and Ed Prescott
- **Question:** Is there any benefit to sticking to a systematic policy?
- The "time consistency" problem:
 - Even though an policymaker plans a particular policy, ...
 - ... once the future comes, they have incentives to renege on their promises.

Rules versus Discretion

- Phrase from title of a Nobel-prize winning paper by Finn Kydland and Ed Prescott
- **Question:** Is there any benefit to sticking to a systematic policy?
- The "time consistency" problem:
 - Even though an policymaker plans a particular policy, ...
 - ... once the future comes, they have incentives to renege on their promises.

Rules versus Discretion

- Phrase from title of a Nobel-prize winning paper by Finn Kydland and Ed Prescott
- **Question:** Is there any benefit to sticking to a systematic policy?
- The "time consistency" problem:
 - Even though an policymaker plans a particular policy, ...
 - ... once the future comes, they have incentives to renege on their promises.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Rules versus Discretion

Application in monetary policy:

- Central bank announces a policy path. Given policy, MP implies an induced inflation path.
- Firms and workers form expectations about inflation path and build them into pricing decisions.
- Given expectations, central bankers have *ex post* incentives to revise policy (*discretionarily*) and pursue an expansionary policy.

note ex post deviation policy is welfare improving.

э

イロト 不得 トイヨト イヨト

Rules versus Discretion

Application in monetary policy:

- Central bank announces a policy path. Given policy, MP implies an induced inflation path.
- Firms and workers form expectations about inflation path and build them into pricing decisions.
- Given expectations, central bankers have *ex post* incentives to revise policy (*discretionarily*) and pursue an expansionary policy.

note ex post deviation policy is welfare improving.

(日)

Rules versus Discretion

Application in monetary policy:

- Central bank announces a policy path. Given policy, MP implies an induced inflation path.
- Firms and workers form expectations about inflation path and build them into pricing decisions.
- Given expectations, central bankers have *ex post* incentives to revise policy (*discretionarily*) and pursue an expansionary policy.

note ex post deviation policy is welfare improving.

人口 医水黄 医水黄 医水黄素 化甘油

Rules versus Discretion

Application in monetary policy:

- Central bank announces a policy path. Given policy, MP implies an induced inflation path.
- Firms and workers form expectations about inflation path and build them into pricing decisions.
- Given expectations, central bankers have *ex post* incentives to revise policy (*discretionarily*) and pursue an expansionary policy.
 - note ex post deviation policy is welfare improving.

人口 医水黄 医水黄 医水黄素 化甘油

Rules versus Discretion

But here's the catch ...

- If firms/consumers are forward looking, use all available information, and their forecast formed consistent with model generating the data (e.g. have rational expectations), ...
- then firms and workers anticipate the policy incentive to deviate and build that anticipation into the immediate pricing and production choices; ...
- resulting in no gain in output, but higher inflation.
- Ex post temptation to do better ends up hurting society.

э

イロト 不得 トイヨト イヨト

Rules versus Discretion

- But here's the catch ...
 - If firms/consumers are forward looking, use all available information, and their forecast formed consistent with model generating the data (e.g. have rational expectations), ...
 - then firms and workers anticipate the policy incentive to deviate and build that anticipation into the immediate pricing and production choices; ...
 - resulting in no gain in output, but higher inflation.
- Ex post temptation to do better ends up hurting society.

Rules versus Discretion

- But here's the catch ...
 - If firms/consumers are forward looking, use all available information, and their forecast formed consistent with model generating the data (e.g. have rational expectations), ...
 - then firms and workers anticipate the policy incentive to deviate and build that anticipation into the immediate pricing and production choices; ...
 - resulting in no gain in output, but higher inflation.
- Ex post temptation to do better ends up hurting society.

Rules versus Discretion

- But here's the catch ...
 - If firms/consumers are forward looking, use all available information, and their forecast formed consistent with model generating the data (e.g. have rational expectations), ...
 - then firms and workers anticipate the policy incentive to deviate and build that anticipation into the immediate pricing and production choices; ...
 - resulting in no gain in output, but higher inflation.
- Ex post temptation to do better ends up hurting society.

Rules versus Discretion

- But here's the catch ...
 - If firms/consumers are forward looking, use all available information, and their forecast formed consistent with model generating the data (e.g. have rational expectations), ...
 - then firms and workers anticipate the policy incentive to deviate and build that anticipation into the immediate pricing and production choices; ...
 - resulting in no gain in output, but higher inflation.
- Ex post temptation to do better ends up hurting society.

Rules versus Discretion

"When a door opens not to your knock, consider your reputation."

Arab proverb

Mantra:

- If you use discretion, you end up hurting the ones you love.
- If you can't commit, you must forfeit.
- A Folk theorem: To sustain commitment, one must have good reputation. A good reputation requires great

"patience"—policymaker has to care about future outcom automation payoffs almost as much as her immediate payoff,

Rules versus Discretion

"When a door opens not to your knock, consider your reputation."

Arab proverb

Mantra:

- If you use discretion, you end up hurting the ones you love.
- If you can't commit, you must forfeit.
- A Folk theorem: To sustain commitment, one must have good reputation. A good reputation requires great

"patience"—policymaker has to care about future outcom

Rules versus Discretion

"When a door opens not to your knock, consider your reputation."

Arab proverb

Mantra:

- If you use discretion, you end up hurting the ones you love.
- If you can't commit, you must forfeit.
- A Folk theorem: To sustain commitment, one must have good reputation. A good reputation requires great

"patience"—policymaker has to care about future outcomes are about fut

Managing expectations in AS-AD

- In the news or in policy jargon, we sometimes hear politicians and technocrats talk about "anchoring expectations" of inflation.
- This is motivated by our last section on Rules vs Discretion.

э

イロト 不得 トイヨト イヨト

Managing expectations in AS-AD

- In the news or in policy jargon, we sometimes hear politicians and technocrats talk about "anchoring expectations" of inflation.
- This is motivated by our last section on Rules vs Discretion.

э

イロト 不得 トイヨト イヨト

Managing expectations in AS-AD

To understand this, we need to modify our AS-AD model.

• Rewrite AS (or PC) curve as

$$\pi_t = \pi_t^e + \lambda (Y_t - \bar{Y}) + \bar{\rho}.$$

In this world people are not naïve. Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of inflation $\pi_t := (P_{t+1} - P_t)/P_t$ is *conditional* on "model-consistent" information Ω_t set.

* What does this even mean?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Managing expectations in AS-AD

To understand this, we need to modify our AS-AD model.

• Rewrite AS (or PC) curve as

$$\pi_t = \pi_t^e + \lambda (Y_t - \bar{Y}) + \bar{\rho}.$$

In this world people are not naïve. Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of inflation $\pi_t := (P_{t+1} - P_t)/P_t$ is *conditional* on "model-consistent" information Ω_t set.

★ What does this even mean?

Managing expectations in AS-AD

To understand this, we need to modify our AS-AD model.

• Rewrite AS (or PC) curve as

$$\pi_t = \pi_t^e + \lambda (Y_t - \bar{Y}) + \bar{\rho}.$$

In this world people are not naïve. Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of inflation $\pi_t := (P_{t+1} - P_t)/P_t$ is *conditional* on "model-consistent" information Ω_t set.

★ What does this even mean?

Managing expectations in AS-AD

Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of future inflation π_{t+1} is *conditional* on "model-consistent" information Ω_t set.

- ▶ they have common knowledge about how the data is generated
- they may not necessarily predict actual outcome
- but probabilitic laws they use to make predictions are consistent with probabilistic laws underlying economy

Managing expectations in AS-AD

Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of future inflation π_{t+1} is *conditional* on "model-consistent" information Ω_t set.

- they have common knowledge about how the data is generated
- they may not necessarily predict actual outcome
- but probabilitic laws they use to make predictions are consistent with probabilistic laws underlying economy

イロト イロト イヨト イヨト 三日

Managing expectations in AS-AD

Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of future inflation π_{t+1} is *conditional* on "model-consistent" information Ω_t set.

- they have common knowledge about how the data is generated
- they may not necessarily predict actual outcome
- but probabilitic laws they use to make predictions are consistent with probabilistic laws underlying economy

イロト イロト イヨト イヨト 三日

Managing expectations in AS-AD

Now

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\}$$

inflation expectations are rational—expectation of future inflation π_{t+1} is *conditional* on "model-consistent" information Ω_t set.

- they have common knowledge about how the data is generated
- they may not necessarily predict actual outcome
- but probabilitic laws they use to make predictions are consistent with probabilistic laws underlying economy

イロト イロト イヨト イヨト 三日

Managing expectations in AS-AD: perfect foresight expectations

Special case

• A special case is perfect foresight!

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\} = \pi_t$$

conditional forecast coincides with actual outcome in the future.
We'll use this special case for illustrative purposes.

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Managing expectations in AS-AD: perfect foresight expectations

Special case

• A special case is perfect foresight!

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\} = \pi_t$$

conditional forecast coincides with actual outcome in the future.

• We'll use this special case for illustrative purposes.

Managing expectations in AS-AD: perfect foresight expectations

Special case

• A special case is perfect foresight!

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\} = \pi_t$$

conditional forecast coincides with actual outcome in the future.

• We'll use this special case for illustrative purposes.

Perfect foresight:

$$\pi_t^e := \mathbb{E}\left\{\pi_t | \Omega_t\right\} = \pi_t$$

The real world is not so stark ...

<ロト <回ト < 注ト < 注ト

Managing expectations in AS-AD: perfect foresight

• Assume *credible* monetary policy

- central bank knows people know that there is no incentive to deviate from announced policy
- central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises $\bar{r})$ credibly
 - The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

イロト イボト イヨト イヨト 三日

Managing expectations in AS-AD: perfect foresight

- Assume *credible* monetary policy
 - central bank knows people know that there is no incentive to deviate from announced policy
 - central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises $\bar{r})$ credibly
 - ▶ The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

Managing expectations in AS-AD: perfect foresight

- Assume *credible* monetary policy
 - central bank knows people know that there is no incentive to deviate from announced policy
 - central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises $\bar{r})$ credibly
 - ▶ The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

Managing expectations in AS-AD: perfect foresight

- Assume *credible* monetary policy
 - central bank knows people know that there is no incentive to deviate from announced policy
 - central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises $\bar{r})$ credibly
 - The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

Managing expectations in AS-AD: perfect foresight

- Assume *credible* monetary policy
 - central bank knows people know that there is no incentive to deviate from announced policy
 - central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises \bar{r}) credibly
 - The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

Managing expectations in AS-AD: perfect foresight

- Assume *credible* monetary policy
 - central bank knows people know that there is no incentive to deviate from announced policy
 - central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises \bar{r}) credibly
 - The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

Managing expectations in AS-AD: perfect foresight

- Assume *credible* monetary policy
 - central bank knows people know that there is no incentive to deviate from announced policy
 - central bank can commit to said plan
- If the central bank lowers the inflation target $\bar{\pi}$ (and therefore raises \bar{r}) credibly
 - The AD curve shifts down (Recall why?)
- If expectations adjust immediately and people use all information,
 - ▶ the AS curve shifts down immediately to the new target.

Managing expectations in AS-AD: perfect foresight expectations

Costless disinflation policy under perfect foresight expectations ...

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - * it can control or anchor expectations of inflation ...
- ▶ Then inflation can be kept low without undergoing recessions.
- Practice:
 - harder to manage or anchor expectations
 - people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - ★ it can control or anchor expectations of inflation ...
- ▶ Then inflation can be kept low without undergoing recessions.

• Practice:

- harder to manage or anchor expectations
- people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - ★ it can control or anchor expectations of inflation ...
- > Then inflation can be kept low without undergoing recessions.
- Practice:
 - harder to manage or anchor expectations
 - people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - ★ it can control or anchor expectations of inflation ...
- Then inflation can be kept low without undergoing recessions.

• Practice:

- harder to manage or anchor expectations
- people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - ★ it can control or anchor expectations of inflation ...
- ► Then inflation can be kept low without undergoing recessions.

• Practice:

- harder to manage or anchor expectations
- people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - ★ it can control or anchor expectations of inflation ...
- ► Then inflation can be kept low without undergoing recessions.

• Practice:

- harder to manage or anchor expectations
- people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: perfect foresight

• Punchline:

- If the central bank can commit ...
 - ★ it can control or anchor expectations of inflation ...
- ► Then inflation can be kept low without undergoing recessions.

• Practice:

- harder to manage or anchor expectations
- people don't behave exactly as a rational expectations agent

Managing expectations in AS-AD: in practice

How do we implement Kydland and Prescott's original idea?

- Rules, credible commitment trump discretion or lack of commitment.
- In practice: inflation targets
 - In many countries, central banks have an explicit target rate of inflation that they seek to apply over the medium horizon.
 - Explicit inflation targets
 - Anchor inflation expectations
 - May make it easier for central banks to stimulate output

Managing expectations in AS-AD: in practice

How do we implement Kydland and Prescott's original idea?

- Rules, credible commitment trump discretion or lack of commitment.
- In practice: inflation targets
 - In many countries, central banks have an explicit target rate of inflation that they seek to apply over the medium horizon.
 - Explicit inflation targets
 - Anchor inflation expectations
 - May make it easier for central banks to stimulate output

イロト 不得 トイヨト イヨト

Managing expectations in AS-AD: in practice

How do we implement Kydland and Prescott's original idea?

- Rules, credible commitment trump discretion or lack of commitment.
- In practice: inflation targets
 - In many countries, central banks have an explicit target rate of inflation that they seek to apply over the medium horizon.
 - Explicit inflation targets
 - Anchor inflation expectations
 - May make it easier for central banks to stimulate output

Managing expectations in AS-AD: in practice

How do we implement Kydland and Prescott's original idea?

- Rules, credible commitment trump discretion or lack of commitment.
- In practice: inflation targets
 - In many countries, central banks have an explicit target rate of inflation that they seek to apply over the medium horizon.
 - Explicit inflation targets
 - Anchor inflation expectations
 - May make it easier for central banks to stimulate output

Managing expectations in AS-AD: in practice

How do we implement Kydland and Prescott's original idea?

- Rules, credible commitment trump discretion or lack of commitment.
- In practice: inflation targets
 - In many countries, central banks have an explicit target rate of inflation that they seek to apply over the medium horizon.
 - Explicit inflation targets
 - Anchor inflation expectations
 - May make it easier for central banks to stimulate output

Managing expectations in AS-AD: in practice

In practice: Constrained discretion

- A central bank has the flexibility to respond to shocks in the short-run.
- The bank is committed to particular rate of inflation in the long run.

э

イロト 不得 トイヨト イヨト

Managing expectations in AS-AD: in practice

In practice: Constrained discretion

- A central bank has the flexibility to respond to shocks in the short-run.
- The bank is committed to particular rate of inflation in the long run.

3

イロト 不得 トイヨト イヨト

Managing expectations in AS-AD: in practice

• In New Zealand this is hard-coded in legislation and RBNZ's Governor contract.

- Explicit goals in RBNZ's monetary policy conduct
- Governor contract stipulates "please explain" and "must resign" clauses if inflation target not met.

Managing expectations in AS-AD: in practice

- In New Zealand this is hard-coded in legislation and RBNZ's Governor contract.
 - Explicit goals in RBNZ's monetary policy conduct
 - Governor contract stipulates "please explain" and "must resign" clauses if inflation target not met.

Managing expectations in AS-AD: in practice

- In New Zealand this is hard-coded in legislation and RBNZ's Governor contract.
 - Explicit goals in RBNZ's monetary policy conduct
 - Governor contract stipulates "please explain" and "must resign" clauses if inflation target not met.

• IS-PC ...

- A model of behavior describing how monetary policy is determined: MP
- Monetary policy can be thought of a determined by a contigency plan.
- In general, contingency plans can be modelled as some function mapping from the state of the decision environment to the decision-maker's policy instrument.
- We assumed a simple monetary policy rule that is a lean-against-the-wind rule in terms of *i*_t responses to inflation gaps.
- Combining with our MP relation, we can rewrite the monetary policy rule as a *real interest rate rule.*

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

- IS-PC ...
- A model of behavior describing how monetary policy is determined: MP
- Monetary policy can be thought of a determined by a contigency plan.
- In general, contingency plans can be modelled as some function mapping from the state of the decision environment to the decision-maker's policy instrument.
- We assumed a simple monetary policy rule that is a lean-against-the-wind rule in terms of *i*_t responses to inflation gaps.
- Combining with our MP relation, we can rewrite the monetary policy rule as a *real interest rate rule.*

- IS-PC ...
- A model of behavior describing how monetary policy is determined: MP
- Monetary policy can be thought of a determined by a contigency plan.
- In general, contingency plans can be modelled as some function mapping from the state of the decision environment to the decision-maker's policy instrument.
- We assumed a simple monetary policy rule that is a lean-against-the-wind rule in terms of i_t responses to inflation gaps.
- Combining with our MP relation, we can rewrite the monetary policy rule as a *real interest rate rule.*

- IS-PC ...
- A model of behavior describing how monetary policy is determined: MP
- Monetary policy can be thought of a determined by a contigency plan.
- In general, contingency plans can be modelled as some function mapping from the state of the decision environment to the decision-maker's policy instrument.
- We assumed a simple monetary policy rule that is a lean-against-the-wind rule in terms of *i*_t responses to inflation gaps.
- Combining with our MP relation, we can rewrite the monetary policy rule as a *real interest rate rule.*

- IS-PC ...
- A model of behavior describing how monetary policy is determined: MP
- Monetary policy can be thought of a determined by a contigency plan.
- In general, contingency plans can be modelled as some function mapping from the state of the decision environment to the decision-maker's policy instrument.
- We assumed a simple monetary policy rule that is a lean-against-the-wind rule in terms of i_t responses to inflation gaps.
- Combining with our MP relation, we can rewrite the monetary policy rule as a *real interest rate rule.*

- IS-PC ...
- A model of behavior describing how monetary policy is determined: MP
- Monetary policy can be thought of a determined by a contigency plan.
- In general, contingency plans can be modelled as some function mapping from the state of the decision environment to the decision-maker's policy instrument.
- We assumed a simple monetary policy rule that is a lean-against-the-wind rule in terms of i_t responses to inflation gaps.
- Combining with our MP relation, we can rewrite the monetary policy rule as a *real interest rate rule.*

• Rewrote

- ► IS and MP as **AD curve**.
- PC and Okun's Law as AS curve.
- Studied properties of AD and AS curves.

æ

ヘロト 人間ト 人間ト 人間ト

Rewrote

- ► IS and MP as **AD curve**.
- PC and Okun's Law as AS curve.
- Studied properties of AD and AS curves.

æ

ヘロト 人間ト 人造ト 人造トー

Rewrote

- ► IS and MP as **AD curve**.
- PC and Okun's Law as AS curve.
- Studied properties of AD and AS curves.

æ

ヘロト 人間 とくほとくほとう

Rewrote

- IS and MP as AD curve.
- PC and Okun's Law as AS curve.
- Studied properties of AD and AS curves.

æ

・ロト ・四ト ・ヨト ・ヨト

- We tested our knowledge of this AS-AD framework by looking at some experiments.
- We discussed the theory behind and the practice of modern monetary policy.
 - Importance of commitment
 - Expectations management
 - Inflation targeting
- Next: What happens if MP cannot work? Use our workhorse for understanding the recent episode of GFC and Great Recession.

・ロト ・ 同ト ・ ヨト ・ ヨト

- We tested our knowledge of this AS-AD framework by looking at some experiments.
- We discussed the theory behind and the practice of modern monetary policy.
 - Importance of commitment
 - Expectations management
 - Inflation targeting
- Next: What happens if MP cannot work? Use our workhorse for understanding the recent episode of GFC and Great Recession.

э

- We tested our knowledge of this AS-AD framework by looking at some experiments.
- We discussed the theory behind and the practice of modern monetary policy.
 - Importance of commitment
 - Expectations management
 - Inflation targeting
- Next: What happens if MP cannot work? Use our workhorse for understanding the recent episode of GFC and Great Recession.

э

イロト 不得 トイヨト イヨト

- We tested our knowledge of this AS-AD framework by looking at some experiments.
- We discussed the theory behind and the practice of modern monetary policy.
 - Importance of commitment
 - Expectations management
 - Inflation targeting
- Next: What happens if MP cannot work? Use our workhorse for understanding the recent episode of GFC and Great Recession.

- We tested our knowledge of this AS-AD framework by looking at some experiments.
- We discussed the theory behind and the practice of modern monetary policy.
 - Importance of commitment
 - Expectations management
 - Inflation targeting
- Next: What happens if MP cannot work? Use our workhorse for understanding the recent episode of GFC and Great Recession.

- We tested our knowledge of this AS-AD framework by looking at some experiments.
- We discussed the theory behind and the practice of modern monetary policy.
 - Importance of commitment
 - Expectations management
 - Inflation targeting
- Next: What happens if MP cannot work? Use our workhorse for understanding the recent episode of GFC and Great Recession.

イロト 不得 トイヨト イヨト

Conversation Pieces

... with your loved ones over dinner tonight

Key words:

- monetary policy rule
- AS and AD
- AS and AD shocks
- rational expectations; perfect foresight example
- rules vs discretion; Kydland and Prescott
- inflation targeting and expectations anchoring

э

Conversation Pieces

... with your loved ones over dinner tonight

Key words:

- monetary policy rule
- AS and AD
- AS and AD shocks
- rational expectations; perfect foresight example
- rules vs discretion; Kydland and Prescott
- inflation targeting and expectations anchoring

э
... with your loved ones over dinner tonight

Key words:

- monetary policy rule
- AS and AD
- AS and AD shocks
- rational expectations; perfect foresight example
- rules vs discretion; Kydland and Prescott
- inflation targeting and expectations anchoring

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

... with your loved ones over dinner tonight

Key words:

- monetary policy rule
- AS and AD
- AS and AD shocks
- rational expectations; perfect foresight example
- rules vs discretion; Kydland and Prescott
- inflation targeting and expectations anchoring

э

イロト 不得 トイヨト イヨト

... with your loved ones over dinner tonight

Key words:

- monetary policy rule
- AS and AD
- AS and AD shocks
- rational expectations; perfect foresight example
- rules vs discretion; Kydland and Prescott
- inflation targeting and expectations anchoring

э

イロト 不得 トイヨト イヨト

... with your loved ones over dinner tonight

Key words:

- monetary policy rule
- AS and AD
- AS and AD shocks
- rational expectations; perfect foresight example
- rules vs discretion; Kydland and Prescott
- inflation targeting and expectations anchoring

3

イロト 不得 トイヨト イヨト