LINEAR STOCHASTIC DIFFERENCE EQUATIONS

SETUP

Consider a stochastic process for our state variables described by the canonical first-order linear stochastic difference equation (LSDE).¹ In some theories and applications (e.g. approximate linearized real or monetary business cycle models) that we will encounter, the solution to the (recursive competitive) equilibrium is approximately given by:

$$x_{t+1} = A_0 x_t + C w_{t+1}, \qquad w_{t+1} \sim \text{i.i.d.}(0, I)$$
 (1)

The models may also induce a relationship between statistically observable variables y_t and the state variables in the theory x_t such that

$$y_t = Gx_t. (2)$$

These items in (1) and (2), including the distribution of the shocks w_t , define a Markov kernel for the economy. (How?)

Consider a small monetary policy model as example. The state vector and the observed vector may look like this

$$x_t = \begin{pmatrix} g_t \\ a_t \\ \pi_t \\ \tilde{y}_t \end{pmatrix}, y_t = \begin{pmatrix} \pi_t \\ \tilde{y}_t \\ r_t \end{pmatrix}.$$

where the three variables in y_t having data counterparts, respectively, are inflation, output gap, and the nominal interest rate. The variables (g_t, a_t) could be exogenous random variable that are Markov processes themselves and have the interpretation of exogenous forcing variables or serially-correlated shocks – e.g. respectively, a government spending (demand) shock and a technology (supply) shock.

1. MOMENTS OF THE LSDE

1.1 Covariance stationary mean

To ensure that $\{x_t\}$ is **covariance stationary** we require that A_0 be a stable matrix. Now take expectations on both sides of (3):

$$Ex_{t+1} = A_0 Ex_t.$$

Let $\mu_t := Ex_t$. Then we can also write the above as:

$$\mu_{t+1} = A_0 \mu_t.$$

A stationary mean is one that satisfies $Ex_{t+1} = Ex_t = \mu$ which can be found as

$$(I - A_0)\,\mu = 0.$$

So in this case, since A_0 is a stable matrix, μ is a vector of zeros. (Why?) Note that we have

$$\mu_t = (A_0)^t \mu_0.$$

If A_0 is stable, then,

$$\lim_{t \to 0} \mu_t \to \mu_t$$

¹This note references Sections 2.1-2.3 in Ljungqvist and Sargent (2004).

$$x_{t+1} = \kappa + A_0 x_t + C w_{t+1}, \qquad w_{t+1} \sim \text{i.i.d.}(0, I)$$
(3)

then the stationary mean is given by

 $(I - A_0)\mu = \kappa \Rightarrow \mu = (I - A_0)^{-1}\kappa.$

We can easily transform the variable so that the LSDE has no constant term κ . In that case, the expanded matrix \tilde{A}_0 will have some unit eigenvalue(s). (Why?)

1.2 Covariance stationary covariances

Given μ we compute stationary covariance matrix as:

$$E(x_{t+1} - \mu)(x_{t+1} - \mu)' = A_0 E(x_t - \mu)(x_t - \mu)' A_0' + CC'$$

since $Ew_{t+1}w'_{t+1} = I$.

Define $\sum_{x}^{t+1} (0) = E(x_{t+1} - \mu)(x_{t+1} - \mu)' = E(x_t - \mu)(x_t - \mu)'$ as the stationary covariance matrix.

And $\Sigma_x(0)$ satisfies:

$$\Sigma_x(0) = A_0 \Sigma_x(0) A_0' + CC'$$

Stationary covariance matrix satisfies

 $\Sigma_x(0) = A_0 \Sigma_x(0) A_0' + CC'$

This is a *discrete Lyapunov* equation in $\Sigma_x(0)$. We can in practice solve this as a recursion starting with an initial positive definite guess $\Sigma_x^0 = I$:

 $\Sigma_x^{s+1} = A_0 \Sigma_x^s A_0' + CC'$

And since A_0 is stable $\lim_{s\to\infty} \Sigma_x^s \to \Sigma_x(0)$.

We can also compute **autocovariances** at different time intervals, *j*. We can write

$$x_{t+j} = A_0 x_{t+j-1} + C w_{t+j}$$

$$x_{t+j} - \mu_{t+j} = A_0 (x_{t+j-1} - \mu_{t+j-1}) + C w_{t+j}$$

$$= A_0 [A_0 (x_{t+j-2} - \mu_{t+j-2}) + C w_{t+j-1}] + C w_{t+j}$$

$$\vdots$$

$$= A_0^j (x_t - \mu_t) + C w_{t+j} + A_0 C w_{t+j-1} + \dots + A_0^{j-1} C w_{t+1}$$

Postmultiply with $(x_t - \mu_t)'$ and take expectations:

$$E(x_{t+j} - \mu_{t+j})(x_t - \mu_t)' = A_0^j E(x_t - \mu_t)(x_t - \mu_t)'$$

$$\Sigma_x(j) = A_0^j \Sigma_x(0).$$

We worked out $\Sigma_x(0)$. So autocovariance at interval j, $\Sigma_x(j)$ is a function of A_0 and $\Sigma_x(0)$. $\Sigma_x(j)$ is independent of t. It depends only on j.

Observation equation: $y_t = Gx_t$. Then we can also find

$$\Sigma_{y}(j) = E\left(y_{t+j} - \mu_{y,t+j}\right)\left(y_{t} - \mu_{y,t}\right)' = G\Sigma_{x}(j)G$$

Note: C representing noise statistics does not appear in the calculation of $\Sigma_{x}(j)$ for all j.

2. IMPULSE RESPONSE FUNCTIONS

Lag operator notation: $Lx_{t+1} := x_t$.

Suppose eigenvalues of A_0 are less than 1. Write

$$x_{t+1} = A_0 x_t + C w_{t+1}$$

as

$$(I - A_0 L) x_{t+1} = C w_{t+1}$$

Neumann expansion

$$(I - A_0 L)^{-1} = I + A_0 L + A_0^2 L^2 + \dots$$

Multiply both sides of

$$(I - A_0 L) x_{t+1} = C w_{t+1}$$

with $(I - A_0 L)^{-1}$ to get

$$x_{t+1} = \left(I + A_0 L + A_0^2 L^2 + \dots\right) C w_{t+1} = \sum_{j=0}^{\infty} A_0^j C w_{t+1-j}$$

i.e. a finite lag VAR process has an infinite VMA representation.

Alternative moving average representation. Iterate

 $x_{t+1} = A_0 x_t + C w_{t+1}$

forward from t = 0:

$$x_{1} = A_{0}x_{0} + Cw_{1}$$

$$x_{2} = A_{0}x_{1} + Cw_{2} = A_{0}^{2}x_{0} + Cw_{2} + A_{0}Cw_{1}$$

$$\vdots$$

$$x_{t} = A_{0}^{t}x_{0} + \sum_{j=0}^{t-1} A_{0}^{j}Cw_{t-j}$$

and

$$y_t = Gx_t = GA_0^t x_0 + G\sum_{j=0}^{t-1} A_0^j Cw_{t-j}.$$

Impulse response functions: Either representation has $A_0^j C$ as the response of x_{t+1} to w_{t+1-j} at each lag j. E.g. a contribution of a shock w_{t-j} to x_t is $A_0^j C$. Also, its contribution to y_t is $GA_0^j C$.

3. FORECASTING

Markov property. Time-t conditional forecast:

$$E_t x_{t+j} = A_0^j x_t$$

where $E_t x_{t+1} = E(x_{t+1}|x_t, x_{t-1}, ..., x_0).$

If $y_t = Gx_t$ and we have

$$E_t \sum_{j=0}^{\infty} \beta^j y_{t+j} = G \left(I - \beta A_0 \right)^{-1} x_t.$$

provided βA_0 has eigenvalues less than 1 in modulus.

EXERCISE 1. Suppose our state space model is AR(1),

 $\begin{aligned} x_{t+1} &= \rho x_t + \varepsilon_{t+1} \\ y_t &= \beta x_t, \quad |\rho| < 1 \end{aligned}$

where $x_t, y_t, \varepsilon_t \in \mathbb{R}$.

Compute

- 1. the stationary mean, variance, and the autocovariance function of $\{y_t\}$.
- 2. the impulse response function for $\{y_t\}$.

REFERENCES

LJUNGQVIST, L., AND T. J. SARGENT (2004): *Recursive Macroeconomic Theory*. MIT Press, Cambridge, MA.