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Abstract

We simulate synthetic data from known data generating processes (DGPs) that arise
from economic theory, and compare the performance of VAR and VARMA models in
fitting the dynamics of our DGPs. We show that in the case of small samples typical of
macroeconomic data, the moving average (MA) component of VARMA models is close
to being non-identified. This in turn leads to an order reduction when identifying the
lag structures of the VARMA models. As a result, VARMA models barely show any
advantage over VARs in approximately characterizing the known DGPs. We provide a
new multivariate insight into why this is so. Our extended findings suggest that there
are pitfalls in relying on VAR/VARMA representations for identifying policy and market-
relevant shifts underlying observed macroeconomic data.
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1 Introduction

Macroeconomists have long recognized that approximate solutions to theoretical dynamic

stochastic general equilibrium (DSGE) models have a VARMA representation with a non-

trivial moving average component (King et al., 1988; Cooley and Dwyer, 1998; Fernández-

Villaverde et al., 2007). However, in practice finite-lag VAR models are used as reduced-form

approximations to locally linear solutions of the DSGE model (see e.g., Christiano et al.,

2006; Bagliano and Favero, 1998; Erceg et al., 2005; Pagan and Pesaran, 2008). Chari et al.

(2007) and Ravenna (2007) showed that a VAR is incapable of capturing the impulse response

dynamics of the true VARMA representation of the DSGE model solution, because the VAR

is only a truncated approximation of the true VARMA data generating process (DGP). We,

as do others, show that the correct VARMA structure is not identified in realistic sample
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sizes, which in turn leads to unreliable inference of the structure of the true DGP. Kascha

and Mertens (2009) attribute it to the fact that the DGPs used in the previous literature (in

particular Christiano et al., 2006; Chari et al., 2007) are:

“[n]early non-stationary, nearly non-invertible and the correct VARMA represen-

tation is close to being not identified.”

In contrast to the claim of Kascha and Mertens (2009), we show that the identification

problem also arises in a counterexample where the true VARMA DGP is strictly invertible and

far away from being non-stationary. We provide some more general analytical understanding

of this problem. We demonstrate that the difficulty in identifying the correct VARMA struc-

ture with small samples is caused by the fact that the roots of the AR and MA lag matrix

polynomials are always very close to each other, and this is true regardless of whether the

system is close to being non-stationary and non-invertible, or not. This near cancellation in

the AR and MA dynamics leads to an order reduction when identifying the canonical VARMA

structure. The same phenomenon has been noted by Cogley and Nason (1993) in the case of

scalar ARMA processes. Here, we provide a multivariate generalization of this insight.

Our experimental design follows and extends the work of Kascha and Mertens (2009),

Erceg et al. (2005), and Ravenna (2007). We consider as a benchmark, the stylized real

business cycle (RBC) model by Hansen (1985) and derive its equilibrium-restricted VARMA

representation (i.e., the true DGP taken by us to be known with certainty). Within our

experiments, a hypothetical econometrician fits reduced-form VAR and VARMA models to

simulated data from the DGP. As a further contribution, we conduct such a thought experi-

ment across a wide class of DGPs, each with increasing layers of dynamic sophistication.

The remainder of this paper is organised as follows. Section 2 considers the comparison

between VARs and VARMA models within the RBC-as-DGP framework. Section 3 discusses

the near cancellation in the AR and MA dynamics in the resulting VARMA DGP from the

RBC model. Section 4 experiments with several alternative DGPs that come from more

complex DSGE models to examine the weak identification of the correct VARMA structure.

Section 5 concludes.

2 DGP 1: Hansen’s RBC and VARMA Identification

We begin with the most used DGP assumption in the literature: The indivisible labor RBC

model of Hansen (1985). There are two exogenous structural shocks in the model—i.e., a non-

stationary technology shock Zt, and a stationary labor supply shock Dt. The social planner

chooses a state-contingent sequence of consumption Ct, capital stock Kt, and labor Nt to

maximize the expected value of the discounted lifetime utility E0
∑∞

t=1 β
t[lnCt+φDt(1−Nt)],

subject to capital accumulation and production technologies, respectively, Kt = Xt − Ct +

(1 − δ)Kt−1, and, Xt = Kα
t−1(ZtNt)

1−α, where α, β ∈ (0, 1), and δ ∈ (0, 1]. The labor-

augmenting technology level Zt and the labor supply shifter Dt follow exogenous stochastic

processes, respectively defined by, lnZt = lnZt−1 + µz + εzt , where εzt
i.i.d.∼ N (0, σ2

z), and,

lnDt = (1− ρd) ln D̄+ ρd lnDt−1 + εdt , where ρd ∈ (0, 1) and εdt
i.i.d.∼ N (0, σ2

d). A technology
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shock has a permanent effect on the level of Zt, and hence on Ct, Kt, and Xt. Therefore,

we define the model in terms of the stationary variables {Nt, Rt, Dt, Ĉt = Ct/Zt, X̂t =

Xt/Zt, K̂t = Kt/Zt, Ẑt = Zt/Zt−1}∞t=1, and log-linearize around the steady state. For any

variable St, we define its log-deviation from the steady state value S̄, by the lower case letter

st = ln(St/S̄). Following Blanchard and Quah (1989), the percentage deviations of hours

worked nt and output growth ∆ lnXt = x̂t − x̂t−1 + ẑt are taken as the observable variables,

that is, yt := (nt, ∆ lnXt)
′.

2.1 DGP and experimental design

The RBC model is parameterized following Erceg et al. (2005) and Ravenna (2007). This is

reported in the first column of Table 1. This RBC instance implies an equilibrium-restricted

VARMA(1,1) representation in terms of yt:

yt =

(
0.94 1.05

0 0.80

)
yt−1 + ut +

(
−0.25 −0.92

−0.19 −0.71

)
ut−1, (1)

where ut is the reduced form disturbance with zero mean and non-singular covariance matrix

Σu. The VARMA process (1) is strictly stationary and invertible. The eigenvalues of the AR

and MA coefficient matrices are given in Table 1.

We will now fix (1) as the true DGP in the following Monte Carlo experiments: Consider

econometricians within the experiments who only observe data generated by (1). They then

fit atheoretical VAR and VARMA structures to each simulated sample path, and consider

them as competing models. We then examine whether the reduced-form VAR or VARMA

statisticians are able to match the impulse dynamics of the true VARMA DGP (1).

We consider two cases in every experiment: From the DGP (1), we simulate large-sample-

path (T = 20, 000), and, small-sample-path (T = 200) scenarios. Each of such paths is

replicated or sampled 1,000 times. The setting of T = 200 corresponds to 50 years of quar-

terly data, which is similar to the sample sizes examined in previous studies (see, e.g., Kascha

and Mertens, 2009), and represents a typical sample size for macroeconomic data. This exper-

imental design is repeated in all remaining DSGE models used as “true DGPs” in alternative

experimental cases.

The specification of the lag order in VAR models allows for the estimation of all parameters.

However, VARMA models are not always fully identified in terms of their specification of

AR and MA orders. We need to specify the largest lag orders in each equation in order to

estimate a VARMA model, because the lag orders in one equation can have implication for the

identification of parameters in other equations. Consider the VARMA(1,1) example below:(
y1,t

y2,t

)
=

(
φ11 φ12

0 0

)(
y1,t−1

y2,t−1

)
+

(
u1,t

u2,t

)
+

(
θ11 θ12

0 0

)(
u1,t−1

u2,t−1

)
.

The fact that the longest lag in the second equation is zero implies that φ12 and θ12 are not

separately identifiable.

Therefore, we need to determine the orders of each equation and impose additional zero
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and normalization restrictions before estimating the VARMA model. This can be done using

using the scalar components model (SCM) methodology developed by Athanasopoulos and

Vahid (2008). This method specifies each row of the VARMA model as an SCM with certain

orders (p,q), where p denotes the AR lag length and q denotes the MA lag length in that row.

The highest SCM orders of the entire system are always the same as the overall VARMA

orders.

2.2 Large-sample simulation

For each simulated large sample path, the structure of the VARMA models used by the

econometrician within each experiment is specified using the scalar components model (SCM)

methodology. For example, most sample paths simulated from process (1) are identified as a

VARMA(1,1) model with SCM(1,1) ∼ SCM(1,0). The canonical form for this SCM VARMA

structure is(
1 0

a0 1

)
yt =

(
φ11 φ12

φ21 φ22

)
yt−1 + ut +

(
θ11 θ12

0 0

)
ut−1, (2)

where the SCM(1,0) (second row) does not have an MA lag. There are also some zero and

normalization restrictions imposed on the left-hand side transformation matrix, in order to

ensure a unique identification of the unknown parameters.

Out of the total number of simulated sample paths, the percentage instances of identifying

the correct VARMA(1,1) model with SCM(1,1) ∼ SCM(1,0) is shown in Table 1 as 95.6%.

This is the simplest structure of the underlying true DGP for yt.
1 The identified canonical

SCM VARMA models are estimated using full information maximum likelihood (FIML). The

AR lag of the estimated VARs is selected by the Akaike information criterion (AIC), which

chooses a median of 24 lags. Most of the chosen lags are higher than 15.

The impulse responses of lnXt and nt to the technology shock εzt are plotted in Figure

1 up to 100 periods after a shock occurs. It shows the mean as well as the 2.5th and 97.5th

percentiles of the impulse responses estimated from fitted VARs and VARMA models. In

each individual period, the average of the point estimates generated from 1,000 simulated

samples is taken as the mean impulse response. The distance between the 2.5th and 97.5th

percentiles is referred to as the “97.5/2.5 interval” throughout the paper. Panels (a) and

(c) suggest that the average responses generated from the estimated VARMA models almost

overlap with the theoretical ones. The 97.5/2.5 intervals of both responses have reasonable

scale. On the other hand, Panels (b) and (d) show that the impulse responses generated from

the estimated VARs are systematically biased. Comparing panels (a) and (b), the average

response of lnXt to εzt generated from VARs has a completely different shape from the true

response. Moreover, panel (d) shows that the 97.5/2.5 interval of the response of nt to εzt
excludes the true response for at least 20 periods in the middle. Even with long lags, VARs

are still incapable of mimicking the true dynamics from the theoretical RBC model.

One might suspect that the inability of VARs to approximate the theoretical impulse

1In the other 4.4% of the time, the SCM methodology always finds a structure with higher orders that
nests the SCM(1,1) ∼ SCM(1,0).
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Figure 1: The impulse responses generated from the estimated models (large sample)

(a) lnXt to εzt (VARMA) (b) lnXt to εzt (VAR)

(c) nt to εzt (VARMA) (d) nt to εzt (VAR)

Figure 2: Estimated impulse responses from one particular sample path (large sample)

(a) lnXt to εzt (short VARs) (b) lnXt to εzt (long VARs)

(c) nt to εzt (short VARs) (d) nt to εzt (long VARs)

6



responses is a result of their use of a model selection criterion for choosing the lag length. In

particular, one could suggest that, since we know that RBC models lead to VARMA dynamics,

it might be advisable to choose a long lag length, such as
√
T , instead of using model selection

criteria. In what follows, we examine the impulse responses produced by one particular sample

draw. The AIC chooses 24 lags for this sample path, the Hannan-Quinn information criterion

(HQ) chooses 12 lags, and the Bayesian information criterion (BIC) chooses 3 lags. The

SCM structure for this sample is correctly identified as SCM(1,1) ∼ SCM(1,0). The impulse

responses of lnXt and nt to the technology shock generated from large sample estimations of

this particular sample path are plotted in Figure 2.

Panels (a) and (c) plot the impulse responses generated from the VAR models with lag

lengths chosen by the three information criteria, and the VARMA model is estimated with

the identified underlying SCM structure.2 Evidently, the VARs are incapable of reproducing

the true dynamics of the theoretical model, even with a lag length as high as 24. Given the

conclusion of Kapetanios et al. (2007) that a VAR or order 50 is required for a sample of 30,000

observations, it is plausible to expect that longer VARs will be able to capture the effects of

technology shock more adequately. However, as panels (b) and (d) of Figure 2 suggest,

higher order VARs (e.g. the VAR(100)) contribute nothing other than fluctuations around

the estimated impulse responses from the VAR(30). This is consistent with the findings of

Poskitt and Yao (2012), that the “approximation error” stems from the difference between the

minimum mean-squared-error VAR approximation, and the true VARMA process converges

to its asymptotic limit far more slowly than the asymptotic theory dictates. Consequently,

even with considerably large sample sizes and lag lengths, VAR models are likely to exhibit

serious errors and behave poorly in practice.

2.3 Small-sample simulation

When working with empirical macroeconomic data, usually there are only a limited number

of observations available. Hence, the comparison of VAR and VARMA models based on

small samples is crucial for practitioners. Unfortunately, the SCM identification procedure

for VARMA models always fails to detect the MA component with sample size T = 200: It

chooses SCM(1,0) ∼ SCM(1,1) 84.1% of the time as shown in Table 1, which is equivalent to

a VAR(1). The three information criteria, AIC, HQ, and BIC, only choose lag one for most

of the estimated VAR models.

Figure 3 depicts the mean and 97.5/2.5 interval of the estimated impulse responses with

200 observations. It shows that VAR models based on small samples tend to overestimate

the initial impact of the technology shock, and underestimate the initial impact of the labor

supply shock. This phenomenon is widely found in all cases, even with a larger sample, or a

much higher AR lag length. An important feature of Figure 3 is that the effect of technology

shock on labor supply in VARs dies out much faster than the true effect from the theoretical

model. This can be attributed to the absence of an MA component, in which case the shocks

2The SCM structure does not seem to be crucial in mimicking the impulse dynamics of the theoretical model.
The impulse responses generated from estimating a reduced form VARMA(1,1) model without assuming any
SCM structure almost overlap with those presented here.
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will appear to be less persistent. Kilian (2011) suggests that finite VAR approximation to the

VARMA process may be poor for realistic sample sizes for any feasible choice of lag length,

particularly when the VARMA representation has a large MA root. The first column of Table

1 shows that one of the MA roots (0.9563) is very close to the unit circle; thus, finite VARs

always fail to produce good approximations of the impulse dynamics in the true VARMA

process. We also estimate VARMA models with several different SCM structures to validate

this. The resulting impulse responses do not show visible differences from those in Figure 3,

which is consistent with the conclusion of Kascha and Mertens (2009).3

Figure 3: The impulse responses generated from the estimated VARs (small sample)

(a) lnXt to εzt (b) nt to εzt

(c) lnXt to εdt (d) nt to εdt

3 Examining the AR and MA roots

We would like to undestand why there is, with small sample sizes, non-identification of the AR

and MA components of the true DGP in (2). Here we decompose analytically and show, by

simulating over many parametric instances of the DGP, why that is the case. To do so, we can

rotate each parametric instance of the DGP VARMA system in such a way that we can focus

on the two-dimensional space containing an equivalent scalar AR and a scalar MA parameter.

Note that this rotation still preserves the original SCM(1,1) ∼ SCM(1,0) structure. This

makes our analysis algebraically and graphically more instructive.

Specifically, the algebraic transforms are as follows: In the instance of the RBC DGP, the

resulting version of (2) as DGP is one where φ22 = 0:(
1 0

a0 1

)
yt =

(
φ11 φ12

φ21 0

)
yt−1 + ut +

(
θ11 θ12

0 0

)
ut−1. (2’)

3Plots of the impulse responses generated from the estimated VARMA models are omitted here as they
are almost exactly the same as those presented in Figure 3.

8



Recall that the coefficients a0, φij and θij , i, j = 1, 2, are functions of the deep parameters

of the RBC model. Note that the MA component only appears in the first row of the system

of equations.

As any non-singular linear transformation of yt does not affect the overall orders of the

VARMA process, we consider pre-multiplying equation (2’) by the matrix

(
1 κ

0 1

)
, where κ

is some scalar to be determined. This preserves the original SCM(1,0) form for the second-row

equation of (2’), whereas the first row is rotated as:[
(1+κa0)− (φ11 +κφ21)L

]
nt+(κ−φ12 L)∆ lnXt = u1t+κu2t+θ11u1,t−1 +θ12u2,t−1. (3)

Equation (3) in principle will have a SCM(1,1) structure. However, order reduction can occur

if all of the AR and MA roots in (3) turn out to be equal to the same value.

From equation (3), the two AR(1) coefficients for nt and ∆ lnXt are AR
(1)
n = φ11+κφ21

1+κa0
,

and AR
(1)
x = φ12

κ , respectively. The terms on the left-hand side of equation (3) has an MA(1)

structure. Hence, we can redefine it as (1 − γ L)et, where et is a univariate error term, and

|γ| < 1 is the MA(1) coefficient that guarantees the invertibility of this process. Any value of

κ corresponds to a point in the three-dimensional space (AR
(1)
n (κ), AR

(1)
x (κ), γ(κ)). In order

to reduce the problem to two dimensions with only one AR coefficient and one MA coefficient,

we find the value of κ that makes the two AR(1) coefficients the same, and then use this value

of κ to calculate the MA(1) coefficient γ.4 This is done for each experimental or parametric

instance of the RBC DGP.

In the exact instance where AR
(1)
n = AR

(1)
x = γ, the first row equation (3) degenerates

to a static equation with no lagged variables involved. As a result, the MA component is

not detectable in the system (2’), whose overall orders will be dominated by the second row

equation as a VARMA(1,0) process. More generally, even when each estimated instance of

the triplets are not equal to each other but they are close, it still poses a challenge to the

identification of the correct VARMA structure, particularly in small samples. Cogley and

Nason (1993) came across the same situation in the setting of a univariate ARMA process,

where the AR and MA lag polynomials have roughly the same factors that almost cancel each

other out. What we have here is a multivariate generalization of this insight.

Given what we can learn from the algebraic transforms just described, we next experi-

mentally evaluate the possibility of near cancellation by examining whether the AR(1) and

MA(1) coefficients of the first row equation (3) always stay close to each other. The simulation

procedure to examine the near cancellation of the AR and MA roots is as follows. We vary

the true DGP by simulating the values of the deep parameters in the RBC model randomly

from the distributions tabulated in Table 2, and then compute their implied VARMA(1,1)

coefficients in equation (2’). The value of κ is obtained by equating the two AR(1) coeffi-

cients φ11+κφ21
1+κa0

= φ12
κ , which in turn allows us to record their transforms as equivalent scalar

AR(1) and MA(1) coefficients. We should emphasize again that the computed κ for each

4In general this will yield two different values of κ. We choose the one that generates the smaller distance
between the AR(1) and MA(1) coefficients.
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DGP instance may not be the one that minimizes the differences among the set of triplets

(AR
(1)
n (κ), AR

(1)
x (κ), γ(κ)), hence any result here is a lower bound on the actual severity of

the near-cancellation problem.

Table 2: Distributions of the structural parameters used in the simulation

parameter distribution mean parameter distribution mean variance

β U [0.98, 1] 0.99 µz U [0, 0.01] 0.005

N̄ U [0, 2/3] 1/3 ρd Beta 0.8 0.022

δ U [0, 5%] 2.5% σz Inverse Gamma 0.0148 1

α U [20%, 60%] 40% σd Inverse Gamma 0.009 1

Uniform distributions are used for parameters on which we do not have strong priors, an idea borrowed from the Bayesian
DSGE literature. The range of the steady state level of employment is set to be [0, 2/3] so that its mean is the same as
is in the previous benchmark parameterization. The capital share of income ranges from 20% to 60% according to the
estimations given by Valentinyi and Herrendorf (2008). Beta distribution is used for ρd because ρd is bounded within
[0, 1]. The standard errors of the two structural shocks are drawn from Inverse Gamma distributions with unit variance.

Figure 4 plots corresponding AR(1) and MA(1) coefficient pairs, together with the 45-

degree line. The latter is the set of all instances in which the DGP is exactly unidentifiable.

The two dashed bands in Figure 4 outlines the region in the parameter space where the true

first order autocorrelation coefficient of this ARMA(1,1) process is smaller than 1.96/
√

200.

That is, with a sample size T = 200, given combinations of AR(1) and MA(1) coefficients

within these bands, the true first order autocorrelation will not be recognized as statistically

significantly different from zero. Consequently, the first row equation (3) is likely to be

identified as a SCM(0,0) structure, and hence the second row equation of SCM(1,0) dictates

the overall orders of the system (2’) as VARMA(1,0).

Figure 4: Instances of the RBC-DGPs projected as AR(1)-MA(1) coefficient pairs

(a) Entire feasible space
(b) Not “near-unit root” feasible

subspace

We can see that from the experimental DGPs, the AR(1) and MA(1) coefficients are

always close to each other for most simulated values of the structural parameters. From

1,000,000 simulations, the difference between the AR(1) and MA(1) coefficients is greater

than 0.1 in absolute value for only 2.5% of the time. The pair of coefficients almost always

falls inside the region where the first order serial correlation is statistically insignificant. This
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conclusively shows that the inherent structure of the RBC model itself always gives rise to

a data generating mechanism, in which this type of near cancellation is very likely to occur.

The findings of Kascha and Mertens (2009) still hold in our more general setting: Changing

the value of structural parameters in the RBC model barely affects the fact that the MA root

stays very close to one of the AR roots.

We ensured the invertibility of the VARMA processes in the simulation by setting |γ| < 1

in the rotated representation. Further, we can also check that the identification problem is

not because of the roots of the RBC model’s VARMA DGP being close to unit roots. To

illustrate this point, we used (0.6, 0.6) as an arbitrary cutoff point to demarcate roots that

are sufficiently far away from being near unit root. From the experiment, out of 1 million

simulated DGP instances, about 7% have both roots fall in the set (0, 0.6]2, whereas about

33.5% have both roots fall within (0, 0.8]2. Thus, even conditioning on DGP cases where

the true processes are nowhere near unit root, the near cancellation problem is still quite

prevalent: from Figures 4a and 4b we can see that a majority of these DGP instances are

still inside the non-identification region, irrespective of whether the DGPs have roots that are

near unity or not.

This reveals an important challenge in real-world applications: Even when one has a known

DGP that implies a VARMA process, from a econometrician’s point of view, it is difficult to

distinguish this VARMA process from a finite order VAR statistically in small samples. In

contrast to the claim of Kascha and Mertens (2009), our simulation experiments demonstrate

that even when the VARMA process under investigation is far from being non-stationary and

non-invertible, the identification difficulty still persists due to the closeness of the AR and

MA roots.

4 Near-cancellation in other DGPs

In the basic RBC model above, we show that the roots of the AR and MA lag polynomials are

almost always close to each other, which in turn causes an order reduction when identifying

the structure of the VARMA models using small samples. More importantly, this problem of

near cancellation still remains when we change the values of the structural parameters within

a reasonable range, and, when we consider DGPs that are very far away from implying near-

unit root stochastic processes. Therefore, we conclude that the similarity in the AR and MA

dynamics is an inherent feature of that RBC model itself.

A natural question that arises is whether all VARMA DGPs implied by other types of

DSGE models have near cancellation in the AR and MA dynamics. Although it is not possible

to analyze the entire universe of alternative DGPs, we select a few simple but representative

DSGE models which have richer and more complex internal dynamics induced by various

different economic frictions, and study them below. We conduct the SCM identification

procedure on these models using both large and small samples, and examining the roots of

their AR and MA polynomials. The experimental designs for these DSGE models are the

same as in the previous section, so we will not repeat them again. This exercise will shed

some light on the ubiquity of the near cancellation problem.
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4.1 DGP 2: Habit formation and investment adjustment cost

Consider a variant of the RBC model with habit formation in consumption Ct and leisure Lt =

1−Nt, combined with costly investment adjustment. We provide the model description and

justify the choice of this dynamically more interesting RBC variant in our Online Appendices

C.1 and D. Parameter values in this model are given in Table 1.

Simulation results in the second column of Table 1 reveal that with a sample size of

T = 20, 000, the SCM methodology detects a VARMA(2,1) model for yt = (nt, ∆ lnXt)

most often, but only identifies VARMA(1,1) in the case of T = 200, where the AR and MA

orders in the SCM structure are reduced by one. Apparently, the identification difficulty of

the correct VARMA structure also exists in this DGP when we use small samples. The fact

that AIC always chooses very long lags for finite VAR in the case of T = 20, 000 suggests

that this DGP has strong MA prorogation dynamics—almost all of the selected lag lengths

are higher than 40, with median 49 when the maximum permissable lag length is set to 50.

The minimal VARMA representation for the true process underlying the observables,

yt = (nt, ∆ lnXt)
′, cannot be derived analytically from the log-linearized solution, because

there are more endogenous state variables than the observable variables in this model. The

exact mechanism of this order reduction in identification using small samples is unknown,

as the VARMA coefficients are complicated functions of the structural parameters from the

DSGE model. Given the RBC model example, we suspect that one likely reason is the

closeness of the AR and MA roots, which leads to similar AR and MA dynamics. To gain

some insight into the near cancellation of AR and MA dynamics, we use one simulated sample

path with T = 20, 000 to estimate the identified structure SCM(2,1) ∼ SCM(1,1), and examine

the roots of the AR and MA characteristic polynomials of the estimated VARMA(2,1) model.

FIML estimates of these fitted VARMA models display satisfactory large sample properties,

the estimated coefficients and characteristic roots obtained from several different sample paths

are very similar. The characteristic roots of the AR and MA lag polynomials tabulated in

Table 1 display the same property as in the RBC model example: they are close to each other

and near unity. The closeness of the AR and MA roots is likely to be the reason for the order

reduction in the identification using small samples.

4.2 DGP 3: RBC model with news shocks

We also consider a DGP variant in terms of a RBC model with news shock.5 Since this version

of the model is quite well known, we relegate its description to our Online Appendices C.2

and E. The third column of Table 1 presents the values of the structural parameters. Most

5Macroeconomic models with anticipated policy shocks have drawn a considerable amount of attention
in recent years. This type of model is also appealing to econometricians, because it breaks the conventional
information assumption regarding unanticipated shocks in econometric models. These macroeconomic models
yield non-fundamental shocks, that is, the information set of the forward-looking economic agents does not
match the information set of econometricians. Hence, the space spanned by the structural shocks is larger than
the space spanned by current and lagged variables (see Hansen and Sargent, 1991). Mathematically, this will
cause the VARMA representation of the log-linearized solution of the economic model to be non-invertible, and
the structural shocks cannot be recovered from a VAR(∞) process. In such situations, econometricians can
only work with VARMA models, even with an infinite number of observations. Studies of this type of model
include Sims (1988); Edelberg et al. (1999), and Leeper et al. (2008).
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of them are chosen following Yang (2005).

Taking yt = (nt, ∆ lnXt)
′ again as observable, column three of Table 1 suggests that

identification using 20,000 observations finds that the theoretical DGP is a VARMA(2,1)

process with SCM(2,1)∼SCM(1,1). However, yt is identified to be a VARMA(1,0) process in

most cases using 200 observations. We examine the roots of the AR and MA characteristic

polynomials from one simulated sample path, where the MA roots are calculated from the

corresponding fundamental representation.6 The results presented in Table 1 suggests that the

two MA characteristic roots are close to two of AR roots. Hence, this model with anticipated

policy shocks still suffers from the problems of order reduction and near cancellation of the

AR and MA dynamics. This analysis based on the VARMA DGP resulting from the RBC

model with anticipated policy shocks provides additional evidence of the closeness of AR and

MA characteristic roots and the identification difficulty using small samples.

4.3 DGP 4: A monetary model

We turn to a monetary model with searching-matching friction along the line of Aruoba et al.

(2008), which builds upon the seminal work of Lagos and Wright (2005).7 We relegate the

description of this model to our Online Appendix C.3 and F.

We parameterize the model according to the monetary model literature (Schlagenhauf and

Wrase, 1995; Chari et al., 2002; Heathcote and Perri, 2002; Ireland and Schuh, 2008). Some

key parameter values are shown in the last column of Table 1. Other calibrated parameters are

discussed in our Online Appendix F. The minimal VARMA representation of the log-linearized

solution is a VARMA(2,1) process with the structure SCM(2,1) ∼ SCM(1,1)(
1 0

−0.09 1

)
yt =

(
1.56 −0.02

−0.07 0.57

)
yt−1 +

(
−0.58 0

0 0

)
yt−2 + ut +

(
−1.26 0.40

−1.09 0.34

)
ut−1.

Simulation suggests that when T = 20, 000, the SCM methodology identifies the correct

structure 93.5% of the time, but identifies a VARMA(1,1) with SCM(1,1) ∼ SCM(1,0) most

often when we reduce the sample size to T = 200. We encounter exactly the same problem

as in the prototype RBC model, that is the correct VARMA structure cannot be identified

with only 200 observations. The AR and MA roots shown in Table 1 suggest that once again,

some of the roots are very close, and hence the near cancellation of AR and MA dynamics is

very likely to occur.

6The VARMA models are usually estimated from the data while imposing the stationarity and invertibility
conditions, thus we use the fundamental MA roots instead of the non-fundamental ones. The non-fundamental
roots can be obtained using Blaschke matrices as introduced by Lippi and Reichlin (1994).

7These monetary models have recently been shown to capture US real and monetary (closed or interna-
tional) business cycle facts rather well. For example, Aruoba (2011), among others, examines consumption,
investment, labour productivity, wage, and markups; Gomis-Porqueras et al. (2013) extend the analysis to an
international setting and show that it also matches the excess volatility and persistence in real exchange rate.
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5 Conclusion

In empirical work attempting to identify unobserved policy, demand-, and/or supply-side

shocks from observed macroeconomic time-series data, a practitioner would often condition

their insights on VAR or VARMA representations of the data. She would also impose minimal

long-run and sign-restriction insights from some implicit theory—usually some form of a DSGE

model—on the impulse dynamics of their statistical model-windows to the data.

We have shown that even if econometricians were endowed with the correct long-run and

sign-restriction insights, using a VAR still ends up with a misleading conclusion about the

true DGPs’ dynamics; and this problem is ever-present even if the VAR econometrician had

the luxury of having observed an arbitrarily long sample of data. Further, across many and

varied forms of structural DGPs, in small samples the VARMA econometrician will almost

always fail to identify the correct VARMA structure coming from the DGP. However, this

problem goes away asymptotically—i.e., if the econometrician had the luxury of an arbitrarily

long sample of time-series data.

This poses a conundrum for the reduced-form VAR or VARMA practitioner intent on

identifying, making inferences about, and quantifying economically meaningful shocks to the

economy, whilst being prepared to believe that the data would have come from some unspeci-

fied DGP that shares some behavior with well-accepted theories of business cycles. The earlier

conclusions in the literature (using the prototype RBC-as-DGP example) and our more exten-

sive findings here, suggest that using VARs or VARMAs as identification devices to uncover

policy and market-relevant shifts in the data is quite a problematic endeavor—the researcher

may end up with quite misleading conclusions.
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NOT FOR PUBLICATION
ONLINE APPENDIX

Available publicly from: https://github.com/phantomachine/_varmita

A DGP 1: The Hansen RBC Model

Here we further describe the “correct” long-run restriction information that we have available

to the statisticians within our Monte Carlo experiments in Section 2.1 of the paper.

In the RBC model only the technology shock εzt has a long-run effect on total production.

Denote the VMA representation of yt as yt = Υ(L)ut = Υ(L)A0εt, where the matrix A0

transform the structural shocks εt into ut. The impulse response functions are derived from

the coefficients in the matrix polynomial Υ(L)A0. The response of ∆ lnXt to a labor supply

shock εdt is associated with the term [Υ(L)A0]22. Thus, the long-run identification constraint

implies that [Υ(L)A0]22 = 0. The other restrictions needed for identification come from the

relationship between the variance-covariance matrices of ut and εt that Σu = A0ΣεA
′
0, where

Σε = diag{σ2
z , σ

2
d}. The last step is to determine the sign of the impulse responses by matching

the direction of the long-run impact of the technology shock on output.

The same identification procedure is applied for both the VAR and VARMA models. The

true impulse responses from the theoretical model are taken as the benchmark that an ideal

model is supposed to replicate. The focus is on the impact of the technology shock on lnXt

and nt, particularly the response of lnXt. The effects of the labor supply shock will eventually

fade out, and the only permanent effect is that of the technology shock on total output.

B Examining the AR and MA Roots

This section details the distributions of the DGP parameters used in the simulation exercises

in Section 3 in the paper.

C DGP 2: RBC with Habits and Capital Adjustment Cost

The agent’s criterion function is now: E0

{∑∞
t=1 β

t[ln(Ct − θcCt−1) +Dt(Lt − θlLt−1)]
}

, where

θc, θl > 0. The agent’s utility depends on the current consumption relative to a fraction of the

past consumption and leisure.8

Investment adjustment costs are often introduced in RBC models. They help to match

the empirical evidence that investment adjusts slowly in response to shocks, and hence have

substantive implications for understanding the aggregate dynamics of DSGE models. We

augment the previous model with a quadratic loss function St = ς
2

(
It
It−1
− 1
)2

, ς > 0 as

8The inclusion of habit formation in the consumer’s utility function and investment adjustment cost in the
capital accumulation law has become standard in many macroeconomic models. There has been some empirical
evidence in support of habit formation in the utility function in the literature (see, for example, Campbell and
Cochrane, 1999; Carroll et al., 2000). Furthermore, previous studies (Fuhrer, 2000; Boldrin et al., 2001) have
shown that general equilibrium models with utility functions which incorporate habit formation are able to
produce a hump-shaped responses of consumption and output to all shocks in the model, and in particular to
the monetary policy shock.
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the adjustment cost. The total capital stock in the economy accumulates according to Kt =

(1 − δt)Kt−1 + (1 − St) It, where the capital depreciation rate δt is the time-varying as a

quadratic function of the capital utilization rate Ut, δt = δ0 + δ1 (Ut − 1) + δ2
2 (Ut − 1)2,

δ0, δ1, δ2 > 0. Here Ut will also affect the production function via Xt = (UtKt−1)α(ZtNt)
1−α.

D DGP 3: The RBC Model with News Shock and Fiscal Pol-

icy

Macroeconomic models with anticipated policy shocks have drawn a considerable amount

of attention in recent years. This type of model is also appealing to econometricians, be-

cause it breaks the conventional information assumption regarding unanticipated shocks in

econometric models. These macroeconomic models yield non-fundamental shocks, that is, the

information set of the forward-looking economic agents does not match the information set of

econometricians. Hence, the space spanned by the structural shocks is larger than the space

spanned by current and lagged variables (see Hansen and Sargent, 1991). Mathematically,

this will cause the VARMA representation of the log-linearized solution of the economic model

to be non-invertible, and the structural shocks cannot be recovered from a VAR(∞) process.

In such situations, econometricians can only work with VARMA models, even with an infinite

number of observations. Studies of this type of model include Sims (1988); Edelberg et al.

(1999), and Leeper et al. (2008).

Ignoring for the moment the problem of non-fundamentalness, we construct a simple

RBC model with fiscal foresight based on the work of Yang (2005) in order to examine the

identification of the VARMA structure. The main differences between this model and the

RBC model in Section 2 are the additional policy variables and the specification of exogenous

processes.

The representative household faces the same maximization problem given in our first RBC

model, but now subject to the per-period budget constraint Ct + Kt − (1 − δ)Kt−1 + Tt =

(1 − τLt )WtNt + (1 − τKt )RtKt−1. Here, Tt is a lump-sum tax, and τLt and τKt are the tax

rates on labor and capital income. The government’s per-period budget constraint requires

Gt = Tt + τLt WtNt + τKt RtKt−1. We assume that fiscal policy is exogenously specified. In

particular, the tax rate on labor obeys

ln τLt = ρL ln τLt−1 + µL ln(Xt/Zt) + εLt−1 + rK,L εKt−1 . (4a)

The tax rate on capital follows

ln τKt = ρK ln τKt−1 + µK ln(Xt/Zt) + εKt−1 + rK,L εLt−1 , (4b)

and, government spending in efficiency units follows

ln(Gt/Zt) = ρG ln(Gt−1/Zt−1) + εGt . (4c)

The random variables εGt , εLt , and εKt , are the i.i.d. exogenous government spending, labor
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and capital tax shocks, respectively, and rK,L = 0.26 allows for a correlation between the two

tax processes. Note that, based on the specifications of equations (4a) and (4b), tax shocks

occurring at period-t will change the tax rates at period-(t + 1). Hence, the agents have

foresight of, or “news” about, tax policy one period ahead.

E DGP 4: Monetary Search Model

Since this monetary model is not so standard in terms of it being used as a data-generating

process for experiments in the VAR versus VARMA literature, we describe it here. The

model is a version of Aruoba (2011) or Aruoba et al. (2008), which was shown to match U.S.

monetary business cycle facts quite well.

At the beginning of each time period t, anonymous agents exist on a continuum [0, 1]

and have a common discount factor β ∈ (0, 1). Each t ∈ N is composed of two sub-periods,

night and day. At night, the agents face a random meeting technology, which determines

whether they enter a decentralized market (DM) or not. We assume that with probability

σ ≤ 1/2 that each agent can access the DM as a buyer of a particular good qb. With the

same probability σ, the agent can access the DM to sell his specific qs. With probability

1− 2σ, the agent will leave the DM with no exchange. For the sake of simplicity, we assume

that “double-coincidence-of-wants” events (where buyers and sellers in the DM are able to

barter) and events where the agent can buy qb and sell qs simultaneously, both occur with

zero probability. Anonymity and stochastic trading opportunities in the DM imply that an

intrinsically worthless money-like object (fiat money) will be the only medium of exchange

accepted in these DM trades.9

During the day, agents trade in centralized markets (CM). The CM resembles a standard

neoclassical monetary business cycle model with Walrasian markets. Agents gain utility from

consuming the CM general good X, and disutility of work effort N . Hence agents’ per-period

utility function in the CM is % ln(Xt)−φNt, with the budget constraint Xt+kt−(1−δ)kt−1 =
mt−1−mt

Pt
+wtNt + rtkt−1 +TRt, where mt−1 and kt−1 are stocks of individual nominal money

and capital holdings, Pt is the price level of Xt, and TRt is the lump-sum transfer from the

monetary authority.

The structural shocks in this model are a money supply shock and a technology shock. We

assume that the growth factor of money supply, ψt := Mt/Mt−1, follows a stationary AR(1)

process:

ln(ψt) = ρm ln(ψt−1) + σmεψt , 0 < ρm < 1, and εψt

i.i.d.∼ N (0, 1). (5)

Following Ireland and Schuh (2008), we specify the technology stochastic process as an AR(1)

in its growth factor, Z̃t+1 := Zt+1/Zt:

ln(Z̃t) = ρz ln(Z̃t−1) + σzεzt , 0 < ρz ≤ 1, and εzt
i.i.d.∼ N (0, 1). (6)

9In particular, in the absence of a means of monitoring or communicating between agents, and a lack
of ability to punish unilateral deviations from contractual obligations, an equilibrium with credit or private
claims as media of exchange cannot exist. The inability to enforce or punish arises naturally as a result of the
continuum-of-agents assumption (see e.g., Aliprantis et al., 2007a,b).
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As this model now has two sectors, DM and CM, we define aggregate measure of output

and employment for the economy as a whole. The details of the monetary search model are

described in Appendix E. In terms of the observable variables—percentage deviations of the

aggregate employment and the growth of real output—we have yt := (ntot,t, ∆ lnXtot,t)
′.

E.1 Preferences and Technology

Agents’ per-period preferences are identically represented by

(qb, qs, k,X,N,Z) 7→ u(qb)− c(qs/Z, k/Z) + U(X)− h(N),

where u(qb) is the per-period payoff from consuming a special good qb ∈ R+, Z is the aggregate

labor-augmenting technology, c(qs/Z, k/Z) is the utility cost of producing qs 6= qb with fixed

within-period capital, k. qs and qb are the tradable goods in the DM, where s denotes sold

good and b denotes bought good.10 U(X) is utility of consuming the CM general good X,

and, −h(N) is the disutility of work effort N in the CM.11

E.2 Stationary Markov Decision Processes

Let the vector of aggregate state variables at the beginning of the DM be ŝt := (Mt−1, Kt−1,

Zt, ψt, µ̂t, Pt), whereMt−1 is the aggregate money stock; Kt−1 is the aggregate capital stock;

the aggregate labor-augmenting technology Zt is determined at the beginning of period t;

ψt − 1 is money supply growth rate (determined at the beginning of period t); and µ̂t :=

µ̂(·|Zt, ψt) : B(R+) → [0, 1] is a probability measure defined on the measure space of money

holdings (R+,B(R+)). The price level of X, Pt, is included as an auxiliary state variable,

since we will focus on stationary Markovian equilibria (see Duffie et al., 1994). Denote mt−1

and kt−1 as stocks of individual nominal money and capital holdings, determined at the end

of period t− 1.

Similarly, let st := (Mt−1, Kt−1, Zt, ψt, µt, Pt) denote the aggregate state vector at the

beginning of the CM subperiod, in period t. Since money would have changed hands at the

end of the DM, the distribution of money holdings would have evolved from µ̂t in the DM to

µt at the start of the CM. At time t, st+1 is a random vector.

E.2.1 DM Meeting Process

We assume that there is a probability σ ≤ 1/2 that each agent can access the DM as a buyer

of a particular good qb. With symmetric probability σ, the agent can access the DM to sell

his specific qs. With probability 1 − 2σ, the agent will leave the DM with no exchange. For

the sake of simplicity, we assume that “double-coincidence-of-wants” events (where buyers

and sellers in the DM are able to barter) and events where the agent can buy qb and sell qs

simultaneously, both occur with probability zero.

10It turns out that in the equilibrium qs = qb = q in this model, due to the degeneracy of the distribution
of money holding.

11Or equivalently, let NDM be the labor effort of an agent expended in a DM. Suppose the production
technology, (NDM , k, Z) 7→ F̃ (ZNDM , k) using capital and labor, is bijective and homogeneous of degree one.
Then Z ·NDM = F̃−1(qs/k) · k and c(qs/Z, k/Z) ≡ NDM .
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E.2.2 DM Decision Process

Let V (mt−1, kt−1, ŝt) denote the optimal value of an agent at the beginning of the current

period in the DM with state (mt−1, kt−1, ŝt), where mt−1 and kt−1 denote the individual money

holding and individual capital stock, respectively. The Bellman functional characterizing the

value function (mt−1, kt−1, ŝt) 7→ V (mt−1, kt−1, ŝt) is given by

V (mt−1, kt−1, ŝt) = σV b(mt−1, kt−1, ŝt)+σV
s(mt−1, kt−1, ŝt) + (1− 2σ)W (mt−1, kt−1, st),

(7)

where the indirect utilities V b(mt−1, kt−1, ŝt) and V s(mt−1, kt−1, ŝt) are determined by a par-

ticular pricing protocol in the DM, and (mt−1, kt−1, st) 7→ W (mt−1, kt−1, st) is the value

function for the agent at the start of the CM, to be characterized by the CM decision process

in the next section. The assumption in equation (7) is that there is no discounting between

the DM and CM within the same time period t.

The competitive price-taking assumption for the DM trades implies the ex post buyer’s

problem:

V b(mt−1, kt−1, ŝt) = max
qbt∈[0,mt−1/p̃t]

[
u(qbt ) +W

(
mt−1 − p̃tqbt , kt−1, st

)]
,

where p̃t is the price of the special good qbt and qst , and is taken as given by all buyers and

sellers. Each ex post seller’s problem is:

V s(mt−1, kt−1, ŝt) = max
qst

[−c(qst /Zt, kt−1/Zt) +W (mt−1 + p̃tq
s
t , kt−1, st)] .

E.2.3 CM Decision Processes

Let δ ∈ [0, 1] be the depreciation rate of capital. Denote the competitive rate of return

to physical capital by rt := r(st). Similarly, denote wt := w(st) as the real wage rate for

labor, where each agent’s labor supply decision is Nt := N(mt−1, kt−1, st). Denote each

individual’s CM consumption decision as Xt := X(mt−1, kt−1, st). Let mt := m(mt−1, kt−1, st)

and kt := k(mt−1, kt−1, st) be, respectively, the money and capital holdings decisions for each

individual with the state (mt−1, kt−1, st). Let Pt := P (st) be the competitive price of Xt, and

TRt := TR(st) be the aggregate lump-sum transfer from a monetary authority to the agent.

At the beginning of the CM sub-period, an agent with the state (mt−1, kt−1, st) solves

the recursive problem of:

W (mt−1, kt−1, st) = max
Xt,Nt,mt,kt

{
U(Xt)− φNt + βEλ

[
V (mt, kt, ŝt+1)

∣∣∣∣(Zt, ψt)]}, (8)

subject to

st+1 = G(st,vt+1), vt
i.i.d.∼ ϕ, (9)

Xt + kt − (1− δ)kt−1 =
mt−1 −mt

Pt
+ wtNt + rtkt−1 + TRt, (10)
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where φ is a constant representing the relative importance of CM consumption and leisure

in the utility function W ; λ(st, ·) is induced by G ◦ ϕ in equation (9) for each given st, and

defines an equilibrium product probability measure over Borel-subsets containing st+1. This is

a rational expectations constraint that ensures consistency of beliefs in equilibrium. Implicit

in constraint (9) is the equilibrium transition of the distribution of individual states from the

period-t CM, to the period-(t + 1) DM, µ̂(ŝt+1, ·) = Gµ̂ [µ(st, ·), zt+1], such that the relevant

conditional distribution of assets at the beginning of the period-(t+ 1) CM subperiod is given

by µ(st+1, ·) = Gµ [µ̂(ŝt+1, ·), zt+1] ≡ Gµ ◦Gν(st, zt+1), where Gµ and Gν are components of the

Markov equilibrium map G. The sequential one-period budget constraint is given by equation

(10).

Production in the CM is given by the following representative firm’s problem:

max
Kt−1,Nd

t

{
F (Kt−1, ZtN

d
t )− wtNd

t − rtKt−1

}
,

where F (·, ·) is a production function, Nd
t is aggregate labor demand by the representative

firm in the CM.

E.2.4 Exogenous Processes

We assume that the money supply growth factor, ψt := Mt/Mt−1, follows an AR(1) process:

ln(ψt) = ρm ln(ψt−1) + σmεψt , εψt

i.i.d.∼ N (0, 1),

where 0 < ρM < 1.

Following Ireland and Schuh (2008), we specify the technology stochastic process as an

AR(1) in its growth factor, Z̃t+1 := Zt+1/Zt:

ln(Z̃t) = ρz ln(Z̃t−1) + σzεzt , 0 < ρz ≤ 1 and εzt
i.i.d.∼ N (0, 1).

E.2.5 Market Clearing

In the equilibrium, the resource constraint in the CM must hold such that

F (Kt−1, ZtNt) = Xt +Kt − (1− δ)Kt−1. (11)

Also, the monetary authority’s budget constraint must hold,

TRt =
Mt −Mt−1

Pt
. (12)

These, together with the agent’s CM budget constraint (equation (10)) in equilibrium, imply

that the labor market in the CM must clear as well, i.e. Nd
t = N(st) :=

∫
R+
N(mt−1, kt−1, st)dµt.

Online Appendix — Page SA.6 — E



E.3 Stationary Monetary Equilibrium

The optimal decision processes and market clearing conditions will give rise to a set of func-

tional equations which characterize the necessary conditions for a stationary monetary equilib-

rium. We will require more structure on the equilibrium.12 In particular, we seek a stationary

Markov monetary equilibrium (SME) which is given by allocation and pricing functions that

are time-invariant, and depend on past outcomes only through the current state st.

We assume the following functional forms:

U(X) = % ln(X), h(N) = φN, F (K,ZN) = Kα(ZN)1−α,

where %, φ > 0, α ∈ (0, 1), and

u(q) = ln(q + q)− ln(q), c(q/Z,K/Z) = Z−1q$(K)1−$,

where q > 0 is a constant, and $ ≥ 1.

From the first-order conditions of the CM decision problem in equations (8)-(10) with

respect to mt and kt, we can deduce that the optimal decision rules for mt and kt do not

depend on individual states (mt−1, kt−1).13 Therefore, in equilibrium, all agents exiting from

each CM will appear identical in terms of their individual states (mt−1, kt−1) = (Mt−1,Kt−1)

for all (mt−1, kt−1). Hence, we can characterize the equilibrium allocations as functions of

the aggregate outcomes only—i.e., in terms of “big-M” and “big-K” only — and the labor

allocation Nt will be in terms of the aggregate as well.

We transform the original problem into one in terms of stationary variables. Due to the

presence of a unit root in the {Zt} process, the real allocations in the equilibrium will inherit

the unit root as well. We perform the following transformations: X̃t := Xt/Zt, K̃t := Kt/Zt,

q̃t := qt/Zt, and P̃t := ZtPt/Mt−1, and then denote the SME decision and pricing functions

as (K̃t, q̃t, X̃t, P̃t, Nt) := (K̃(st), q̃(st), X̃(st), P̃ (st), N(st)). Given any function f(x, y, · · · ),
denote the (partial) derivative of f(x, y, · · · ) with respect to x by f ′x(x, y, · · · ). The SME is

defined as follows.

Definition 1 (SME) Given the exogenous processes {Z̃t, ψt}t∈N, a SME consists of bounded

stochastic processes {K̃t, q̃t, X̃t, P̃t, Nt}t∈N, satisfying the following conditions:

1. Optimal investment:

U ′X(X̃t) = βEλ

{
U ′X(X̃t+1)

Z̃t+1

[
F ′K(K̃t/Z̃t+1, Nt+1)− δ

]
−σ

c′K(q̃t+1, K̃t/Z̃t+1)

Z̃t+1

∣∣∣∣(Z̃t, ψt)
}
, (13)

12As a general rule, monetary models such as this can induce many other interesting types of equilibria,
including chaotic and sunspot equilibria (see e.g. Lagos and Wright, 2003). However, from an econometric
perspective, these equilibria may not be so amenable to econometric analysis.

13This is a result of the quasi-linearity in the preference functions, i.e. there are no wealth effects.
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2. Inter-temporal optimal money holdings:

U ′X(X̃t) = βEλ
{
U ′X(X̃t+1)

P̃t

ψtP̃t+1

×

[
(1− σ) + σ

u′q(q̃t+1)

c′q(q̃t+1, K̃t/Z̃t+1)

] ∣∣∣∣(Z̃t, ψt)}, (14)

3. Labor market clearing:

U ′X(X̃t) =
φ

F ′N (K̃t−1/Z̃t, Nt)
, (15)

4. DM price-taking solution:

U ′X(X̃t)

P̃t
ψt = c′q(q̃t, K̃t−1/Z̃t)q̃t, (16)

5. Resource constraint:

X̃t + K̃t + G̃t = F (K̃t−1/Z̃t, Nt) + (1− δ)K̃t−1/Z̃t. (17)

E.4 Auxiliary Variable Definitions

This model now has two sectors, the DM and the CM, so we would like to define an aggregate

measure of output and employment for the economy as a whole. First, note that the DM price

is determined from the DM terms of trade definition p̃t = Mt/qt. Therefore, in its stationary

form we have ˜̃ptq̃t = ψt. The CM total output, in units of the CM final good, is

X̃CM,t = F (K̃t−1/Z̃t, Nt).

The DM nominal output, using P̃t as the unit of account, is

Xnom
DM,t =

σP̃t
φψt

[
F ′N (K̃/Z̃t, Nt)

]
c′q(q̃t, K̃t−1/Z̃t)q̃t,

where we make use of the equilibrium DM price taking solution. Define the share of DM

output value in the total output value as

χt :=
Xnom
DM,t

Xnom
DM,t + P̃tX̃CM,t

.

Note that this share is time-varying since it is also dependent on the period-t aggregate state

st. We can now define our measure of aggregate price index as

P̃X,t = χt ˜̃pt + (1− χt)P̃t.
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The total real output in this two sector economy is defined as

X̃tot,t =
Xnom
DM,t + P̃tX̃CM,t

P̃X,t
. (18)

Total labor includes employment in the CM, and also labor effort in DM. In terms of the

stationary equilibrium, the total employment is given by

Ntot,t = σc(q̃t, K̃t−1/Z̃t) +Nt. (19)

Denote the percentage deviations of Ntot,t and X̃tot,t in equations (18) and (19) as ntot,t and

x̃tot,t respectively. In terms of the corresponding observable variables, employment and the

growth of real output, we now have yt := (ntot,t, ∆ lnXtot,t)
′.

E.5 Parametrization and Calibration

We parameterize the model according to the monetary model literature; see Schlagenhauf

and Wrase (1995); Chari et al. (2002); Heathcote and Perri (2002); Ireland and Schuh (2008).

First, the discount factor β is set to be 0.99; the capital depreciation rate δ is set to be 2.5%;

the share of capital income α is set to be 1/3; and the probability of entering DM as a buyer

or seller is ρ = 0.26.

As for the parameters in the exogenous shock processes, the steady state values of both

technology and the gross money supply are set to be 1. The AR(1) coefficients are ρm = 0.5857

and ρz = 0.6, while the standard deviations are σm = 0.00397 and σz = 0.007.

We calibrate the remaining parameters (φ, %,$) to match the targets of the proportion

of total hours worked (DM and CM aggregate), Ntot, the velocity of money as defined in the

work of Aruoba et al. (2008), and the long run capital-output ratio, K/Xtot. The value of N̄tot

is 0.33, which is standard. This helps us to pin down the calibration of the disutility of labor

in the CM parameter, φ = 4.966. The velocity of money is around 1.3225 per quarter in the

data for the M1 definition of monetary aggregate. This is used to pin down the calibration of

the utility weight of consuming Xt, which is % = 0.754. The target capital-output ratio is 2.23

in annual terms. The calibrated value of $ = 1.289 implies that the more capital is installed

for use in the DM production, the lower the cost of producing a unit of DM output qt.
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