1. State Space

Consider the game state space as D := \Delta (\mathcal{Z}), the set of all probability measures on the finite individual state-space \mathcal{Z} := \{-N,...,-1,+1,...,+M\}, where 0<N,M <+\infty. Let N_{z}:=M+N \equiv |\mathcal{Z}|.

1.1. Properties

The set D is:

  1. is a unit simplex embedded in \mathbb{R}^{N_{z}}:

\begin{equation*}
     \Delta (\mathcal{Z}) := \left\{ \lambda \in \mathbb{R}^{N_{z}}:
        \lambda_{i} \in [0,1], \forall i = 1,...,N_{z},
        \text{ and }
        \sum_{i=1}^{N_{z}} \lambda_{i} = 1
     \right\}
\end{equation*}

  1. represented by a convex polytope (i.e. a unit N_{z}-simplex);
  2. partitioned into K < +\infty equal-area (N_{z}-1)-simplices, Q_{k}, k \in \{ 1,...,K \} =: \mathbf{K}.

Relevant functions \blacktriangleright

simplex_tripart(K)

Returns K number of equal volume simplex partition elements of unit simplex D, given by Q_{k}, k = 1,...,K.

The next figure–Example state-space partition scheme –shows an example where K = 16 and N_z = 3.

Partition Elements of D

Example state-space partition scheme (N_z = 3, K = 16)