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This web documentation details the methods proposed in the paper by Kam and Stauber, “Computing Dynamic
Public Insurance Games with Endogenous Agent Distributions”.

This is a downloadable PDF version of the documentation.
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CHAPTER

ONE

STATE SPACE

Consider the game state space as 𝐷 := ∆(𝒵), the set of all probability measures on the finite individual state-
space 𝒵 := {−𝑁, ...,−1,+1, ...,+𝑀}, where 0 < 𝑁,𝑀 < +∞. Let 𝑁𝑧 := 𝑀 + 𝑁 ≡ |𝒵|.

1.1 Properties

The set 𝐷 is:

1. is a unit simplex embedded in R𝑁𝑧 :

∆(𝒵) :=

{︃
𝜆 ∈ R𝑁𝑧 : 𝜆𝑖 ∈ [0, 1],∀𝑖 = 1, ..., 𝑁𝑧, and

𝑁𝑧∑︁
𝑖=1

𝜆𝑖 = 1

}︃
1. represented by a convex polytope (i.e. a unit 𝑁𝑧-simplex);

2. partitioned into 𝐾 < +∞ equal-area (𝑁𝑧 − 1)-simplices, 𝑄𝑘, 𝑘 ∈ {1, ...,𝐾} =: K.

Relevant functions I

simplex_tripart(K)
Returns 𝐾 number of equal volume simplex partition elements of unit simplex 𝐷, given by 𝑄𝑘, 𝑘 =
1, ...,𝐾.

The next figure–Example state-space partition scheme –shows an example where 𝐾 = 16 and 𝑁𝑧 = 3.

3



HARDPIG, Release 1.0a

Figure 1.1: Example state-space partition scheme (𝑁𝑧 = 3,𝐾 = 16)
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CHAPTER

TWO

ACTIONS AND TRANSITIONS

Let 𝐴 ∋ 𝑎𝑗 denote the finite action set of each individual (small) player 𝑗 ∈ 𝒵 . Then 𝐴 := 𝐴𝒵 ∋ 𝑎, denotes the
𝑁𝑧-copies of an individual’s action space—i.e. the set of action profiles 𝑎. The finite set 𝐴 has 𝑁𝑎 := |𝐴| number
of action profiles.

For each action profile 𝑎 ∈ 𝐴, its associated Markov transition probability function is a linear operator 𝑃 (𝑎) :
𝐷 → 𝐷.

Relevant functions I

A_ProfileSet(self)
Returns the finite set 𝐴 of 𝑁𝑎 action profiles of individual small players. A numeric array of size
𝑁𝑎 ×𝑁𝑧 .

TransProbA(self)
Returns the finite set of Markov maps 𝑃 (𝑎) : 𝐷 → 𝐷, one for every 𝑎 ∈ 𝐴. A numeric array of size
𝑁𝑧 ×𝑁𝑧 ×𝑁𝑎.

5
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CHAPTER

THREE

INTERSECTIONS WITH STATE-SPACE PARTITIONS

For every 𝑘 ∈ K and its associated simplicial partition element 𝑄𝑘 ⊂ 𝐷 with positive volume, the set-valued
image 𝑃 (𝑎)(𝑄𝑘):

1. is another 𝑁𝑧-simplex contained in the unit 𝑁𝑧-simplex 𝐷; and

2. intersects with:

• at least one partition element 𝑄𝑘′ where 𝑘′ ∈ K and

• at most all partition elements 𝑄1, ..., 𝑄𝐾 ;

3.1 Polytope intersection problems

Denote

I(𝑎, 𝑘) := {𝑘′ ∈ K : 𝑃 (𝑎)(𝑄𝑘) ∩𝑄𝑘′ ̸= ∅} , ∀𝑎 ∈ 𝐴, 𝑘 ∈ K,

as the sets of indexes to respective partition-elements—i.e. 𝑘′ ↦→ 𝑄𝑘′—that contain non-empty intersections with
each simplicial image 𝑃 (𝑎)(𝑄𝑘). Each nonempty intersection, induced by each (𝑎, 𝑘) ∈ 𝐴 × K and 𝑃 (𝑎), is
described by

𝑃𝑜𝑙𝑦𝑘′(𝑎,𝑘) := {𝜆′ ∈ 𝐷 : 𝜆′ ∈ 𝑃 (𝑎)(𝑄𝑘) ∩𝑄𝑘′ ̸= ∅ and 𝑘′ ∈ I(𝑎, 𝑘)} .

Note: Each intersection 𝑃𝑜𝑙𝑦𝑘′ , for each 𝑘 ∈ K and each 𝑎 ∈ 𝐴, is a polytope, and is at least a simplex, and is a
subset of partition element 𝑄𝑘′ , where 𝑘′ := 𝑘′(𝑎, 𝑘).

These nonempty intersections are such that⋃︁
𝑘′∈I(𝑎,𝑘)

𝑃𝑜𝑙𝑦𝑘′ :=: 𝑃 (𝑎)(𝑄𝑘).

Example

If 𝑁𝑧 = 3, then 𝐷 is a unit 2-simplex, and each 𝑃𝑜𝑙𝑦𝑘′ can be a polygon or a triangular subset in 𝐷.

7
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CHAPTER

FOUR

SAMPLING ON STATE-SPACE PARTITIONS

We will be drawing uniform sample vectors of the variable 𝜆 ∈ 𝐷 from each partition element 𝑄𝑘, 𝑘 ∈ K of the
domain 𝐷. And then we will also use this in conjunction with the Polytope intersection problems.

Each partition element in general is a tetrahedron simplex. We utilize a modified Markov-chain Monte Carlo
sampler called the Hit-and-Run Algorithm, originally due to [Smi1984]. This algorithm has a desirable property
that it can (globally) reach any point in any arbitrarily given bounded set in R𝑛 in one step. That is, there is a
positive probability of sampling from any neighborhood in that set. Moreover, it is proven by [Lov1999] that
the Hit-and-Run sampler converges fast (in probability) to a uniform distribution on convex bodies 𝑄𝑘 ⊂ R𝑛. 1

[LV2003] note that this algorithm is the fastest in practice.

Hit-and-Run Algorithm

Let 𝑆 ⊂ R𝑛 be a convex region that restricts sample realizations. The aim is to generate sample 𝑋 :=
{𝑠𝑚}𝑁𝑠𝑖𝑚

𝑚=1 as a Markov Chain that is (asymptotically) uniformly distributed on 𝑆. Define 𝑓(𝑠) by any
continuous and strictly positive probability density function (pdf) on 𝑆.

• Start at a given point 𝑠 in the given set 𝑆. Let 𝑚 = 1.
• Propose a new location 𝑠′ = 𝑠+ 𝑙𝑑 by stepping away from 𝑠 according to a random direction-stepsize

pair, (𝑑, 𝑙), where the direction 𝑑 is uniformly distributed on the unit hypersphere S𝑛−1 embedded in
R𝑛; and the stepsize 𝑙 ∈ R is drawn from a proposal density 𝑔𝑚(𝑙|𝑑, 𝑠).

• Accept proposal move to 𝑠′ with acceptance probability 𝛼̃𝑓 (𝑠, 𝑠′), or, reject and stay at 𝑠 (i.e. set
𝑠′ = 𝑠) with probability 1− 𝛼̃𝑓 (𝑠, 𝑠′).

• Then set 𝑠𝑚+1 as 𝑠′, and, repeat the procedure again from the first step, and let 𝑚 = 𝑚 + 1.

To implement this simple algorithm, we need to define the functions {𝑔𝑚(·|𝑑, 𝑠) : 𝑚 ≥ 1}, and 𝑓 (which implies
𝛼̃𝑓 ) to ensure the necessary and sufficient (Kolmogorov) detailed balance condition holds (for the chain to be a
reversible Markov chain):

𝑔𝑚

(︂
‖𝑠− 𝑠′‖; 𝑠′ − 𝑠

‖𝑠− 𝑠′‖
, 𝑠

)︂
𝛼̃𝑓 (𝑠, 𝑠′)𝑓(𝑠) = 𝑔𝑚

(︂
‖𝑠− 𝑠′‖; 𝑠− 𝑠′

‖𝑠− 𝑠′‖
, 𝑠′

)︂
𝛼̃𝑓 (𝑠′, 𝑠)𝑓(𝑠′).

This demands that the products of probabilities around every closed loop are the same in both directions around
the loop.

• We can define 𝑓(𝑠) by any continuous and strictly positive probability density function (pdf) on 𝑆.

• Let 𝐿𝑚 := {𝑙 ∈ R : 𝑠𝑚 + 𝑙𝑑𝑚 ∈ 𝑆}. Define a conditional proposal density for each step 𝑚 = 1, ..., 𝑁𝑠𝑖𝑚

by 𝑔𝑚(𝑙|𝑑, 𝑠).

– Proposal densities that satisfy the detailed balance condition include the class of symmetric proposal
density—i.e. 𝑔𝑚(𝑙|𝑑, 𝑠) = 𝑔𝑚(𝑙) = 𝑔(−𝑙) for all 𝑙 ∈ R, in which case

𝛼̃(𝑠, 𝑠′) = min

{︂
𝑓(𝑠′)

𝑓(𝑠)
, 1

}︂
.

1 [Lov1999] proves that the upper bound on the convergence rate is in polynomial time of 𝒪(𝑛3).

9
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– Since we have also 𝑆 bounded, we can define a valid proposal density as

𝑔𝑚(𝑙) =
1{𝑙∈𝐿𝑚}∫︀

R 1{𝑢∈𝐿𝑚}𝑑𝑢
.

Example

In our application, we will define a 𝑆 := 𝑄𝑘 for every 𝑘 ∈ K.

See Section 6.3.1 of [KTB2011] for a generalized version of this simple algorithm.

Looking ahead

Here we give a preview of the usage of uniform sampling from the convex partition elements. In Equilibrium
Payoff Correspondence later, we show that in our class of dynamic games, the description of the symmetric
sequential equilibrium operator (which is correspondence valued) involves solving many non-separable
bilinear programs (BLP) of the form:

max
𝜆,𝑤

𝑢𝑇 + 𝜆𝑇𝑄𝑤

𝑠.𝑡. 𝜆 ∈ ℱ1(𝑤),

𝑤 ∈ ℱ2(𝜆);

where 𝑢 ∈ R𝑁𝑧 is a vector of constants; 𝜆,𝑤 ∈ R𝑁𝑧 are the variables of interest; 𝑄 is some (𝑁𝑧 ×𝑁𝑧) real
matrix; and the constraint sets ℱ1(𝑤) and ℱ2(𝜆) are convex polytopes which, respectively, depend on the
choices of 𝑤 and 𝜆. a b

We propose a Monte Carlo or stochastic approach to obtain 𝜖-global (i.e. approximately global) optimization
solutions to these non-separable bilinear programs. For now, notice that for each given realization of the
random vector 𝜆, the nonseparable BLP above can be reduced to standard linear programs (LP) in the
variable 𝑤. c

a A special (and textbook case) is where ℱ1(𝑤) ≡ ℱ1 and ℱ2(𝜆) ≡ ℱ2—i.e. each constraint set ℱ1 and ℱ2 do not vary,
respectively, with the choice variables 𝑤 and 𝜆. This special case is known as a separable bilinear program, and, it nests quadratic
programming as another special case. These problems are known to have a global solution–see [BM1993]. Furthermore, successive
approximation using branching-and-bounding methods–i.e. branching into subsets of the optimizer domain, then bounding the value
function below by the solutions of linear programs on each subset of the function domain, and, above by the value from a local nonlinear
optimizer–can be used to find the 𝜖-global optimum: [McC1976] , [BM1993] and [HT1996]

b In the paper, we noted that in this class of games, the source of bilinear nonseparability in the constraint sets of 𝜆 and 𝑤 is the
utilitarian government’s set of incentive or promise-keeping constraints.

c Note that by fixing each 𝜆, the constraint set ℱ1(𝑤) will be redundant in the LP formulation within the stochastic global optimiza-
tion scheme. Additionally, we will also require each realization 𝜆 to be feasible according to some feasibility (e.g. a budget-balance)
requirement(s): 𝜆 ∈ ℱ(𝑄𝑘) := {𝜆 ∈ 𝑄𝑘 : 𝜆𝑏𝑇 ≥ 0,∀𝑏 ∈ 𝐵}, where 𝐵 is some finite set of action profiles of the large (government)
player.

Example (Sampling from 𝑄𝑘 and 𝑃𝑜𝑙𝑦𝑘′ )

The following figure (Uniform samples and various polytope intersections ) shows an example of our usage
of the Hit-and-Run algorithm in conjunction with our polytope intersection problems described earlier. For
example, consider the (4,1)-panel in this figure. It shows the realizations of the random vectors 𝜆𝑃 (𝑎),
where 𝑎 = 4 denotes the fourth action profile in 𝐴, that would end up in the various partition elements of
(𝑄3, 𝑄4, 𝑄5, 𝑄8), and given that each vector 𝜆 is randomly drawn from the set 𝑄9.

10 Chapter 4. Sampling on State-space Partitions
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Figure 4.1: Uniform samples and various polytope intersections (𝑃 (𝑎4), 𝑁𝑧 = 3,𝐾 = 16)
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CHAPTER

FIVE

STATE SPACE COMPUTATIONS

Now we describe the implementation for the key tasks involved so far. We will need to:

• compute state state partitions: 𝐷 := ∪𝐾𝑘=1𝑄𝑘;

• construct transitions from each subspace 𝑄𝑘 into corresponding sets 𝑃 (𝑎)(𝑄𝑘) ⊂ 𝐷, for every possible
action profile 𝑎 ∈ 𝐴;

• record intersections 𝑃 (𝑎)(𝑄𝑘) ∩𝑄′
𝑘, for every 𝑘, 𝑘′ ∈ K; and

• sample uniform points from each 𝑄𝑘, and check for nonempty samples that end up transitioning to each
respective intersecting set 𝑃 (𝑎)(𝑄𝑘) ∩𝑄′

𝑘.

5.1 Storage

We only need to store:

1. each index 𝑘′ ∈ I(𝑎, 𝑘) ⊆ K, which refers to some partition element(s) 𝑄𝑘′ whose subset 𝑃𝑜𝑙𝑦𝑘′ is
accessible from 𝑄𝑘 given operator 𝑃 (𝑎).

• This suffices for indexing the correct slices of equilibrium payoff sets over the corresponding subset
𝑃𝑜𝑙𝑦𝑘′ of the state space 𝐷.

2. the finite number of vertices of each 𝑃𝑜𝑙𝑦𝑘′ and the corresponding linear (weak) inequality representation
of each 𝑃𝑜𝑙𝑦𝑘′ .

• This will become apparent later when we solve separable bilinear programming problems where it
involves optimizing over these subsets 𝑃𝑜𝑙𝑦𝑘′ (when constructing max-min punishment values in the
game).

3. the sub-samples from all the Hit-and-Run realizations that belong to every partition element 𝑄𝑘 which will
end up in particular intersections summarized by each polytope 𝑃𝑜𝑙𝑦𝑘′ .

5.2 Implementation

Since we have finite partition elements 𝑄𝑘 and finite action profile set 𝐴 ∋ 𝑎, then we can enumerate and store
all intersections previously denoted by {𝑃𝑜𝑙𝑦𝑘′(𝑘,𝑎) : ∀𝑎 ∈ 𝐴, 𝑘 ∈ K} or equivalently by their index sets
{I(𝑎, 𝑘) : (𝑎, 𝑘) ∈ 𝐴×K}.

13
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Pseudocode

For each (𝑎, 𝑘) ∈ 𝐴×K:

• Get vertex representation of 𝑄𝑘 ∈ 𝐷
• Set 𝑃 (𝑎) as 𝑃
• Get vertex representation 𝑇 from 𝑃 (𝑄𝑘)
• Simulate Hit-and-Run uniform realizations in simplex 𝑇 . Get

𝑋 := {𝜆𝑛}𝑁𝑠𝑖𝑚
𝑛=1 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑙𝑦𝐹 𝑖𝑙𝑙(𝑁𝑠𝑖𝑚, 𝑇 )

• Set 𝑖← 0
For each 𝑘′ ∈ K:

– Get vertex representation of 𝑄′
𝑘 ∈ 𝐷

– Get intersection 𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦 = 𝑄𝑘′ ∩ 𝑇 (a polytope) as:

𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦 ← 𝑃𝑜𝑙𝑦𝐵𝑜𝑜𝑙(𝑄𝑘′ , 𝑇 )

– If 𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦 ̸= ∅:
* Set 𝑖← 𝑖 + 1

* Store index to partition elements 𝑄𝑘′ when 𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦 is nonempty. Set

𝑇𝑟𝑖𝐼𝑛𝑑𝑒𝑥(𝑎, 𝑘)(𝑖)← 𝑘′

* Store vertex data of polytope. Set:

𝑃𝑜𝑙𝑦𝑉 𝑒𝑟𝑡𝑠(𝑎, 𝑘, 𝑘′)← 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑦

* Store linear inequality representation of the same polytope. Set:

𝑃𝑜𝑙𝑦𝐿𝑐𝑜𝑛𝑠(𝑎, 𝑘, 𝑘′)← 𝑉 𝑒𝑟𝑡2𝐿𝑐𝑜𝑛(𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦)

* Map Monte Carlo realizations 𝑋 under operator 𝑃 . Set:

𝑌 ← 𝑃 (𝑋)

* List members of 𝑌 that end up in 𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦. Set:

𝑌𝑖𝑛 ← 𝐼𝑛𝑃𝑜𝑙𝑦𝑡𝑜𝑝𝑒(𝑌, 𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦)

{𝑃𝑜𝑙𝑦𝑅𝑎𝑛𝑑(𝑎, 𝑘, 𝑘′), 𝑖𝑛} ← 𝑌𝑖𝑛

* Record all vectors {𝜆𝑛} ⊆ 𝑋 that induce 𝑌𝑖𝑛 under map 𝑃 (𝑎):

{𝑃𝑜𝑙𝑦𝑄𝑗𝑅𝑎𝑛𝑑(𝑎, 𝑘, 𝑘′), 𝐼𝑛𝑑𝑒𝑥} ← 𝑋(𝑖𝑛)

* Store corresponding indices {𝑛 : 𝜆𝑛𝑃 (𝑎) ∈ 𝑌𝑖𝑛}:

𝑃𝑜𝑙𝑦𝐼𝑛𝑑𝑒𝑥𝑄𝑗𝑅𝑎𝑛𝑑(𝑎, 𝑘, 𝑘′)← 𝐼𝑛𝑑𝑒𝑥

• Return: 𝑇𝑟𝑖𝐼𝑛𝑑𝑒𝑥, 𝑃𝑜𝑙𝑦𝑉 𝑒𝑟𝑡𝑠, 𝑃𝑜𝑙𝑦𝐿𝑐𝑜𝑛𝑠, 𝑃𝑜𝑙𝑦𝑅𝑎𝑛𝑑, 𝑃𝑜𝑙𝑦𝑄𝑗𝑅𝑎𝑛𝑑, 𝑃𝑜𝑙𝑦𝐼𝑛𝑑𝑒𝑥𝑄𝑗𝑅𝑎𝑛𝑑

Note: Computationally, we only need to construct sets {𝑃𝑜𝑙𝑦𝑘′(𝑘,𝑎) : ∀𝑎 ∈ 𝐴, 𝑘 ∈ K} (e.g. PolyVerts and
PolyLcons in the pseudocode above) or {I(𝑎, 𝑘) : (𝑎, 𝑘) ∈ 𝐴 ×K} (i.e. TriIndex in the pseudocode above) once
beforehand.

14 Chapter 5. State Space Computations
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Relevant functions I

Simplex_IntersectPmap(self)
Returns 4 possible output:

•QP :
–a structure variable containing all others below.

•TriIndex :
–a cell array containing indices 𝑘′(𝑎, 𝑘) ∈ I(𝑎, 𝑘) ⊆ K of partition elements that have non-
empty intersections with each simplicial image 𝑃 (𝑎)(𝑄𝑘).

•PolyVerts :
–a cell array, where each cell is an array with rows corresponding to vertices of 𝑃𝑜𝑙𝑦𝑘′(𝑎,𝑘),

a polytope contained in the partition element 𝑄𝑘. Each cell element is consistent with the
index 𝑘′(𝑎, 𝑗) ∈ I(𝑎, 𝑘) ⊆ K stored in TriIndex.

•PolyLcons :
–is a set of linear (weak) inequality constraint representation of PolyVerts.

•PolyRand :
–Realizations of random vectors 𝜆𝑠𝑃 (𝑎) ∈ 𝑄𝑘′ where 𝑘′ ∈ I(𝑎, 𝑘) and 𝜆𝑠 ∼ U[𝑄𝑘]—
i.e. is uniformly drawn from 𝑄𝑘 according to a Hit-and-Run algorithm [ HYPERLINK TO
ALGORITHM DESCRIPTION ], classified according to each PolyVerts{a}{k}{k’}.

•PolyQjRand :
–Inverse of PolyRand. Each PolyQjRand{a}{k}{k’} gives the set of 𝜆𝑠 ∼ U[𝑄𝑘], where under

action profile 𝑎, the induced vector is 𝑃 (𝑎)(𝜆𝑠) ∈ 𝑄𝑘′ and 𝑘′ ∈ I(𝑎, 𝑘).
•PolyIndexQjRand :

–Each PolyIndexQjRand{a}{j} gives the set of indices {𝑠 ∈ {1, ..., 𝑁𝑠𝑖𝑚} : 𝑠 ↦→ 𝜆𝑠 ∈
𝑄𝑘, 𝜆𝑠𝑃 (𝑎) ∈ 𝑄𝑘′ and 𝑘′ ∈ I(𝑎, 𝑘)}. The number of Monte Carlo simulations of these
uniform vectors subject to each convex body 𝑄𝑘 has to be prespecified as 𝑁𝑠𝑖𝑚.

See also:
PolyBool, Simplex_Intersect, Vert2Lcon, RandPolyFill, cprnd

5.2. Implementation 15
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CHAPTER

SIX

EQUILIBRIUM PAYOFF CORRESPONDENCE

In State Space we constructed a partition of the simplex 𝐷 := ∆(𝒵). Now, we let 𝐷 be the domain of the
equilibrium payoff correspondence. The task ahead is to approximate the equilibrium value correspondence 𝒱 :
𝐷 ⇒ R𝒵 using convex-valued step correspondences.

6.1 Background

Notation reminder:

• Action profile of small players on [0, 1], 𝑎 ∈ 𝐴. (Assume 𝐴 is a finite set.) Each small player takes on a
personal state 𝑗 ∈ 𝒵 := {−𝑁, ...,−1,+1, ...,+𝑀} at each date 𝑡 ∈ N.

• Actions of large player (𝐺), 𝑏 ∈ 𝐵. 𝐵 := {𝑏 ∈ R𝒵 : −𝑚 ≤ 𝑏(𝑗) ≤ 𝑚̄, for 𝑗 > 0, and, 0 ≤ 𝑏(𝑗) ≤
𝑚̄, for 𝑗 < 0,∀𝑗 ∈ 𝒵} is a finite set and contains vectors 𝑏 that are physically feasible (but not necessarily
government-budget feasible in all states).

• Extended payoff vector space, R𝒵 , where 𝒵 := 𝒵 ∪ {𝐺}.

• Probability distribution of small players on finite set 𝒵 , 𝜆 ∈ 𝐷 := ∆(𝒵).

• Profile of continuation values of agents, 𝑤 ∈ R𝒵 .

• Transition probability matrix at action profile 𝑎, 𝑃 (𝑎)

• Individual 𝑗 ∈ 𝒵 , given action 𝑎(𝑗) faces transition probability distribution, 𝑝𝑗(𝑎(𝑗)) ∈ 𝑃 (𝑎)

• Flow payoff profile, 𝑣𝑗(𝑎, 𝑏) := 𝑢(𝑐𝑏(𝑗))− 𝜑(𝑎𝑗), where

– 𝑣(𝑎, 𝑏) := (𝑣𝑗(𝑎, 𝑏))𝑗∈𝒵 ;

– Utility-of-consumption function, 𝑢(·); and

– Disutility-of-effort/action function, −𝜑(·).

• Public date-𝑡 history, ℎ𝑡 := {𝜆𝑡, 𝑥𝑡, 𝑏𝑡−1}𝑡≥0, where

– 𝜆𝑡 = (𝜆0, ..., 𝜆𝑡) is a history of agent distributions up to and include that of date 𝑡;

– 𝑥𝑡 = (𝑥0, ..., 𝑥𝑡) where 𝑥𝑡 is a date-𝑡 realization of the random variable 𝑋𝑡 ∼𝑖.𝑖.𝑑. U([0, 1]); and

– 𝑏𝑡−1 = (𝑏0, ..., 𝑏𝑡−1) is a history of government policy actions up to the end of date 𝑡 − 1 and let
{𝑏−1} = ∅.

Also, ℎ0 := (𝜆0, 𝑥0).

17
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Definition (Consistency)

Let 𝒲 : 𝐷 ⇒ R𝒵 be a compact- and convex-valued correspondence having the property that 𝑤(𝐺) =∑︀
𝑗∈𝒵 𝜆(𝑗)𝑤(𝑗) for all (𝜆,𝑤) ∈ graph(𝒲). A vector (𝑏, 𝑎, 𝜆′, 𝑤) ∈ 𝐵 × 𝐴 × ∆(𝒵) × R𝒵 is consistent

with respect to𝒲 at 𝜆 if
1. −𝜆𝑏𝑇 ≥ 0;
2. 𝜆′ = 𝜆𝑃 (𝑎);
3. 𝑤 ∈ 𝒲(𝜆′); and
4. For all 𝑗 ∈ 𝒵 , 𝑎(𝑗) ∈ argmax𝑎′

{︀
(1− 𝛿)

[︀
𝑢(𝑐𝑏(𝑗))− 𝜑(𝑎′)

]︀
+ 𝛿E𝑝𝑗(𝑎′)[𝑤(𝑖)]

}︀
.

Definition (Admissibility)

For (𝜆, 𝑏) ∈ 𝐷 ×𝐵 let

𝜋(𝜆, 𝑏) := min
(𝑎′,𝜆′′,𝑤′)

⎡⎣(1− 𝛿)
∑︁
𝑗∈𝒵

𝜆(𝑗)[𝑢(𝑐𝑏(𝑗))− 𝜑(𝑎′(𝑗))] + 𝛿
∑︁
𝑗∈𝒵

𝜆′′(𝑗)𝑤′(𝑗)

⎤⎦ ,

subject to (𝑏, 𝑎′, 𝜆′′, 𝑤′) is consistent with respect to𝒲(𝜆). Let (𝑎̃(𝜆, 𝑏), 𝜆̃′(𝜆, 𝑏), 𝑤̃(𝜆, 𝑏)) denote the solu-
tions to the corresponding minimization problem. A vector (𝑏, 𝑎, 𝜆′, 𝑤) ∈ 𝐵 × 𝐴 × 𝐷 × R𝒵 is said to be
admissible with respect to𝒲(𝜆) if

1. (𝑏, 𝑎, 𝜆′, 𝑤) is consistent with respect to𝒲(𝜆); and
2. (1 − 𝛿)

∑︀
𝑗∈𝒵 𝜆(𝑗)[𝑢(𝑐𝑏(𝑗)) − 𝜑(𝑎(𝑗))]𝛿

∑︀
𝑗∈𝒵 𝜆′(𝑗)𝑤(𝑗) ≥ max𝑏′∈𝐵(𝜆) 𝜋(𝜆, 𝑏′), where 𝐵(𝜆) :=

{𝑏 ∈ 𝐵 : −𝜆𝑏𝑇 ≥ 0}.

Admissible payoff vectors

The payoff vector defined by an admissible vector (𝑏, 𝑎, 𝜆′, 𝑤) at 𝜆 is given by

𝐸𝐺(𝑏, 𝑎, 𝜆′, 𝑤)(𝜆) = (1− 𝛿)
∑︁
𝑗∈𝒵

𝜆(𝑗)[𝑢(𝑐𝑏(𝑗))− 𝜑(𝑎(𝑗))] + 𝛿
∑︁
𝑗∈𝒵

𝜆′(𝑗)𝑤(𝑗)

𝐸𝑗(𝑏, 𝑎, 𝜆
′, 𝑤)(𝜆) = (1− 𝛿)

[︀
𝑢(𝑐𝑏(𝑗))− 𝜑(𝑎(𝑗))

]︀
+ 𝛿E𝑝𝑗(𝑎(𝑗))[𝑤(𝑖)].

Note that 𝐸𝐺(𝑏, 𝑎, 𝜆′, 𝑤)(𝜆) =
∑︀

𝑗∈𝒵 𝜆(𝑗)𝐸𝑗(𝑏, 𝑎, 𝜆
′, 𝑤)(𝜆).

In the paper, we proved the following:

SSE Recursive Operator

A SSE is a strategy profile 𝜎 ≡ {𝛼𝑡, 𝛽𝑡}𝑡≥0 such that given initial game state 𝜆0, for all dates 𝑡 ≥ 0, and
all public histories ℎ𝑡 := {𝜆𝑡, 𝑥𝑡, 𝑏𝑡−1}𝑡≥0, 𝑎 := 𝛼𝑡(ℎ

𝑡, 𝑏𝑡) and 𝑏 := 𝛽𝑡(ℎ
𝑡), and, if 𝒱 is the SSE payoff

correspondence, then 𝒱 is the largest fixed point that satisfies the recursive operator

B(𝒱)(𝜆) := co{𝐸(𝑏, 𝑎, 𝜆′, 𝑤)(𝜆) | (𝑏, 𝑎, 𝜆′, 𝑤) is admissible w.r.t.𝒱(𝜆)},

where co denotes the convex hull of a set.
The object of interest can be found recursively: 𝒱 = lim𝑛→+∞ B𝑛(𝒲0), for any initial convex-valued and
compact correspondence𝒲0.

Note: Given state 𝜆 and agent payoff vector 𝑤 ∈ R𝒵 determine a unique corresponding government payoff given
by 𝜆 · 𝑤. We can thus ignore the government payoff when defining the equilibrium value correspondences and
their approximations, and restrict their codomain to R𝒵 .

18 Chapter 6. Equilibrium Payoff Correspondence



CHAPTER

SEVEN

APPROXIMATING SSE OPERATORS

The goal ahead is to approximate and provide computable representations of:

• each candidate correspondence𝒲 : 𝐷 ⇒ R𝒵 ; and

• the operator𝒲 ↦→ B(𝒲).

7.1 Conceptual

Recall {𝑄𝑘 | 𝑘 = 1, . . . ,𝐾} denotes a partition of 𝐷, so 𝐷 =
⋃︀𝐾

𝑘=1 𝑄𝑘. An upper hemicontinuous, compact-
and convex-valued correspondence𝒲 : 𝐷 ⇒ R𝒵 can be approximated by step-valued correspondences using the
following procedures: Letting

𝜔𝑜
𝑘(𝜆) :=

{︃
co

⋃︀
𝜆∈𝑄𝑘

𝒲(𝜆′) if (𝜆) ∈ 𝑄𝑘,

∅ otherwise,

the correspondence defined by𝒲𝑜(𝜆) :=
⋃︀

𝑘 𝜔
𝑜
𝑘(𝜆) gives an outer step-valued approximation of𝒲 .

Similarly, letting

𝜔𝑖
𝑘(𝜆) :=

{︃⋂︀
𝜆∈𝑄𝑘

𝒲(𝜆) if 𝜆 ∈ 𝑄𝑘,

R𝒵 otherwise,

the correspondence defined by𝒲𝑖(𝜆) :=
⋂︀

𝑘 𝜔
𝑖
𝑘(𝜆) yields an inner step-valued approximation of𝒲 .

7.2 Practical

Since the convex-valued approximations 𝒲𝑜 and 𝒲𝑖 are constant on each partition element 𝑄𝑘, and there are
𝐾 < +∞ partition elements, these approximations can be further approximated by constructing outer and inner
approximations for the sets 𝜔𝑜

𝑘(𝜆) and 𝜔𝑖
𝑘(𝜆) using convex polytopes. Let S𝑁𝑧−1 :=

{︀
𝑥 ∈ R𝑁𝑧 : ‖𝑥‖ = 1

}︀
be

the unit (𝑁𝑧 − 1)-sphere where the norm ‖ · ‖ is given by ‖𝑥‖2 =
(︁∑︀𝑁𝑧

𝑗=1 𝑥
2
𝑗

)︁1/2

. Suppose we have finite sets of

directional vectors: 𝐻 := {ℎ𝑙 ∈ S𝑁𝑧−1 : 𝑙 = 1, ..., 𝐿} and 𝐻̃ := {ℎ̃𝑙 ∈ S𝑁𝑧−1 : 𝑙 = 1, ..., 𝐿′}. Let 𝜔̄𝑜
𝑘(𝜆) and

𝜔̄𝑖
𝑘(𝜆) denote the corresponding polytope approximations, respectively, of 𝜔𝑜

𝑘(𝜆) and 𝜔𝑖
𝑘(𝜆), where

𝜔̄𝑜
𝑘(𝜆) :=

{︃⋂︀𝐿
𝑙=1{𝑧|ℎ𝑙 · 𝑧 ≤ 𝑐𝑜𝑙 (𝑘)} if 𝜆 ∈ 𝑄𝑘,

∅ otherwise
,

and,

𝜔̄𝑖
𝑘(𝜆) :=

{︃⋂︀𝐿′

𝑙=1{𝑧|ℎ̃𝑙 · 𝑧 ≤ 𝑐𝑖𝑙(𝑘)} if 𝜆 ∈ 𝑄𝑘,

∅ otherwise
.

Let 𝒲̄𝑜 := ∪𝑘∈K𝜔̄𝑜
𝑘 and 𝒲̄𝑖 := ∪𝑘∈K𝜔̄𝑖

𝑘 denote the resulting correspondences. One would like the “true”
correspondence 𝒲 to be “sandwiched” by polytope “step-correspondences” 𝒲̄𝑜 from the outside, and, by 𝒲̄𝑖

19
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from the inside. 1

𝒲̄𝑖 ⊂ 𝒲𝑖 ⊂ 𝒲 ⊂ 𝒲𝑜 ⊂ 𝒲̄𝑜. (7.1)

The last statement (7.1) is only true if the step-correspondence levels 𝑐𝑜𝑙 (𝑘) and 𝑐𝑖𝑙(𝑘) are defined, respectively, as
the maximal and minimal levels over each domain partition element 𝑄𝑘, in each direction ℎ𝑙 ∈ 𝐻 or ℎ̃𝑙 ∈ 𝐻̃ . 2

In the next section, we show how to construct these upper- and lower bounding estimates 𝑐𝑜𝑙 (𝑘) and 𝑐𝑖𝑙(𝑘) by using
stochastic global optimization programs and also separable bilinear program formulations, when𝒲 represents a
candidate guess of the symmetric sequential equilibrium payoff correspondence in our class of games.

1 This idea of providing both upper- and lower-bounding estimates of a given correspondence was first proposed by [JYC2003] in the
computation of repeated games. Our proposed method is a modification of [SY2000] who in turn extended [JYC2003] to the computation
of value correspondences in dynamic games. Our contribution will be in the form of bilinear programming formulations as a practical and
computable means of constructing these approximate correspondences.

2 In the context of our game, where 𝒲 stands for a candidate guess of the equilibrium value correspondence, the last statement (7.1) is only
true if the step-correspondence levels 𝑐𝑜𝑙 (𝑘) and 𝑐𝑖𝑙(𝑘) are defined, respectively, as the globally maximal and minimal values of each nonlinear
programming problem (which is defined over each state-space partition element 𝑄𝑘 , in each direction ℎ𝑙 ∈ 𝐻 or ℎ̃𝑙 ∈ 𝐻̃) that summarizes
the concept of symmetric sequential equilibrium of the game.

20 Chapter 7. Approximating SSE operators



CHAPTER

EIGHT

BILINEAR PROGRAMS AND SSE OPERATOR

Here we give an overview of our main computational insight and proposed method for constructing the operators
𝒲̄𝑜 ↦→ B𝑜(𝒲̄𝑜), and 𝒲̄𝑖 ↦→ B𝑖(𝒲̄𝑖).

Given a candidate correspondence𝒲 , evaluating the symmetric sequential equilibrium (SSE) operator at this point
in the set of compact and convex-valued correspondences (see Definition 3 in the paper), B(𝒲), will involve:

1. Calculating state-dependent max-min punishment values, 𝜋(𝜆) := max𝑏 𝜋(𝜆, 𝑏).

• We show that this is amenable to a separable bilinear program (BLP).

• We will describe how these BLPs are solved to 𝜖-global optimality.

2. Given 𝜋(𝜆), compute the total-payoff sets supported by action-states-continuation-value tuples, (𝑏, 𝑎, 𝜆, 𝑤),
that are admissible with respect to𝒲:

• We will show that this consists of subproblems that are non-separable BLPs.

• These can be solved by a specific stochastic global optimization problem that involves sub-problems
that are linear programs (LP).

We adapt Steps 1 and 2 above for both outer- and inner-approximations, respectively, yielding approximate outer-
and inner evaluations of the step-correspondence images B𝑜(𝒲̄𝑜) and B𝑖(𝒲̄𝑖).

21
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22 Chapter 8. Bilinear programs and SSE operator



CHAPTER

NINE

PUNISHMENT VALUES AND BLPS

The first step is to construct punishment values over each partition element of the state space. This will turn out to
be amenable to separable bilinear programming formulations.

Punishment payoffs for the large player 𝐺 are constructed as follows.

• For each 𝑎 ∈ 𝐴, define a correspondence 𝒲̃ : 𝐷 ×𝐴⇒ R𝒵 by

𝒲̃(𝜆′, 𝑎) := {𝑤 ∈ 𝒲(𝜆′) | ∀𝑗 ∈ 𝒵,∀𝑎′ ∈ 𝐴

𝛿[𝑝𝑗(𝑎′)− 𝑝𝑗(𝑎𝑗)] · 𝑤 ≤ (1− 𝛿)[𝜑(𝑎′)− 𝜑(𝑎𝑗)]}.

Note: Note 𝒲̃ encodes two requirements:

– Continuation values 𝑤 must be consistent with the set 𝒲̃(𝜆′) where 𝑤 itself enforces the action-
continuation-state profile pair (𝑎, 𝜆′) ≡ (𝑎, 𝜆𝑃 (𝑎)); and

– individually, the action-and-promised-value pair (𝑎𝑗 , 𝑤𝑗) are optimal (i.e. “incentive compatible”).

• Next, construct government punishment vectors

– (𝜋̌𝑘)𝐾𝑘=1, and

– (𝜋̂𝑘)𝐾𝑘=1

by letting

𝜋(𝜆) := max
𝑏∈𝐵

min
𝑎,𝜆′,𝑤

[(1− 𝛿)𝜆 · 𝑣(𝑎, 𝑏) + 𝛿𝜆′ · 𝑤],

s.t. 𝜆′ = 𝜆𝑃 (𝑎),

− 𝜆𝑏𝑇 ≥ 0,

𝑤 ∈ 𝒲̃(𝜆′, 𝑎),

(9.1)

Then define: 𝜋̌𝑘 := min𝜆∈𝑄𝑘
𝜋(𝜆) and 𝜋̂𝑘 := max𝜆∈𝑄𝑘

𝜋(𝜆).

Note:
• If𝒲(𝜆′) is defined as a convex polytope, then 𝒲̃(𝜆′, 𝑎) is also a convex polytope.

• Given (𝑎, 𝑏) ∈ 𝐴 × 𝐵, the minimization program (9.1) is a mild nonlinear programming problem–i.e. a
separable bilinear programming formulation–of the following generic form

min
𝜆,𝑤

𝑢𝑇 + 𝜆𝑇𝑄𝑤

𝑠.𝑡.𝜆 ∈ ℱ1,

𝑤 ∈ ℱ2.

(9.2)

• Moreover, ℱ1 and ℱ2 are disjoint convex and bounded polytopes.
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Existence of Optimum

If 𝐹1 and 𝐹2 are bounded then there exists an optimal solution of (9.2), (𝜆*, 𝑤*), such that 𝜆* ∈ ℱ1 and
𝑤 ∈ ℱ2.
See [HPT2000] or [HT1996].

Separable BLP is NP-complete

A bilinear program can be solved in NP time.
See [Man1995].

Assume that we are solving the minimization problem in (9.2). We employ a well-known deterministic global
optimization algorithm known as branch-and-bound (BNB). First, a relaxation of the bilinear program is solved.
Typically, this is done by solving inexpensive LPs. [CM2009] The solution of the relaxed problem yields a lower
bound on the globally optimal solution which is a convex lower envelope. The relaxation is then iteratively
refined, by refining the domain (feasible sets) and successively eliminating dominated local optima. (This is also
a common method in solving integer linear programs.) An upper bound estimate of the optima can be found by
using local nonlinear solvers (e.g. SNOPT and IPOPT) over each branch. Thus we have successively improved
branching partitions of the domain (i.e. branching) and lower- and upper-bounding estimates (i.e. bounding) of
the 𝜖-global optimum.

Note: The BNB algorithm we use follows [McC1976] and is implemented through the Bi-
linear Matrix Inequality BNB interface (BMIBNB) available in Stefan Lofberg’s YALMIP
(http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Solvers.BMIBNB). To solve the local lower-
bounding LPs, we use the GNU GLPK (http://www.gnu.org/software/glpk/) open-source optimizer
and to solve the upper-bounding nonlinear programs, we use either SNOPT (http://www.sbsi-sol-
optimize.com/asp/sol_products_snopt_desc.htm) or IPOPT (https://projects.coin-or.org/Ipopt).

9.1 Implementing punishment values

The following pseudocode implements the punishment calculations for the outer-approximation scheme:

24 Chapter 9. Punishment values and BLPs
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Pseudocode

Input: 𝐻, 𝑐, 𝑃𝑜𝑙𝑦𝐿𝑐𝑜𝑛𝑠

For each (𝑄𝑘, 𝑎, 𝑏) ∈ 𝐷 ×𝐴×𝐵:

• Markov map 𝑃 ← 𝑃 (𝑎)
• Simplex 𝑇 ← 𝑃 (𝑄𝑘)
• Get I(𝑎, 𝑘) := {𝑘′ ∈ K : 𝑘′ ↦→ 𝑄𝑘′ ∈ 𝐷,𝑄𝑘′ ∩ 𝑇 ̸= ∅ }

– Uses: xTriIndex from Simplex_IntersectPmap

For each 𝑘′ ∈ I(𝑎, 𝑘):

– Get linear inequality representations of 𝑇 ∩𝑄𝑘′ as

(𝑀𝑘′ , 𝑑𝑘′)← 𝑥𝑃𝑜𝑙𝑦𝐿𝑐𝑜𝑛𝑠(𝑎, 𝑘, 𝑘′)

– Get current payoff profile 𝑣(𝑎, 𝑏)
– Solve separable BLP

𝜋̌(𝑄𝑘, 𝑎, 𝑏, 𝑘
′) = min

𝜆∈𝑄𝑘,𝑤
𝜆[(1− 𝛿)𝑣(𝑎, 𝑏) + 𝛿𝑃𝑤]

𝑠.𝑡.

𝑀𝑘′(𝜆𝑃 )𝑇 ≤ 𝑑𝑘′

𝜆𝑏𝑇 ≤ 0

𝐻𝑤 ≤ 𝑐𝑜(𝑄′
𝑘, ·)

𝛿[𝑝𝑗(𝑎′)− 𝑝𝑗(𝑎𝑗)] · 𝑤 ≤ (1− 𝛿)[𝜑(𝑎′)− 𝜑(𝑎𝑗)], ∀𝑗 ∈ 𝒵

• Get 𝜋̌(𝑄𝑘, 𝑎, 𝑏) = min𝑘′∈I(𝑎,𝑘) 𝜋̌(𝑄𝑘, 𝑎, 𝑏, 𝑘
′).

• Get 𝜋̌(𝑄𝑘) = max𝑏∈𝐵 min𝑎∈𝐴 𝜋̌(𝑄𝑘, 𝑎, 𝑏).

Note:
• The separable constraint sets ℱ1 and ℱ2 for 𝜆 and 𝑤, respectively, are given by constraints in the BLP.

These constraint say the following.

– ℱ1: the first two constraints require 𝜆 ∈ 𝑄𝑘 to be such that

* for each 𝑎 ∈ 𝐴, 𝑘 ∈ K and 𝑘′ ∈ I(𝑎, 𝑘), the resulting continuation state 𝜆𝑃 (𝑎) ∈ 𝑄𝑘′ ∩ 𝑃 (𝑄𝑘);
and

* given a fixed policy 𝑏, the choice over 𝜆 renders 𝑏 feasible according the the government budget
constraint;

– ℱ2 is given by the requirements that 𝑤 be

* consistent with respect to the step correspondence slice𝒲(𝑘′) which has constant levels over the
partition element 𝑄𝑘′ ; and

* such that 𝑤 is incentive compatible for all small agents.

• Constructing the punishment values 𝜋̂𝑘 for the inner-approximation scheme is similar to what we did above
in detail for 𝜋̌𝑘. The only differences are

1. in the second last step of the pseudocode above, replace that line with:

9.1. Implementing punishment values 25
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𝜋̂(𝑄𝑘, 𝑎, 𝑏) = max
𝑘′∈I(𝑎,𝑘)

𝜋̂(𝑄𝑘, 𝑎, 𝑏, 𝑘
′).

Of course we should also re-label all the 𝜋̌ notation for the punishment value function with 𝜋̂; and

2. maximize over 𝜆 ∈ 𝑄𝑘 in the main BLP problem.

Relevant functions I

Punish_Outer(self)
Returns:

•pival :
–A (𝐾 × 1) numeric array containing elements 𝜋̌(𝑄𝑘) where 𝑘 ∈ K.

See also:
PunishK
Punish_Inner(self)

Returns:
•pival :

–A (𝐾 × 1) numeric array containing elements 𝜋̂(𝑄𝑘) where 𝑘 ∈ K.
See also:
PunishK

26 Chapter 9. Punishment values and BLPs



CHAPTER

TEN

COMPUTING APPROXIMATE SSE PAYOFFS

Now we are ready to describe the computation of the approximate SSE payoff correspondence. The basic idea
is from [JYC2003] who use linear program (LP) formulations as the approximation. Our extension illustrates
that when we have probability distributions (with finite support) as state variables, the approximate SSE payoff
correspondence can be constructed via bilinear program (BLP) formulations.

Notation:

• Let

𝑣𝑗(𝑎, 𝑏) := 𝑢(𝑐𝑏(𝑗))− 𝜑(𝑎𝑗)

• Given:

– a vector of agent actions 𝑎,

– a government policy vector 𝑏, and

– a vector of continuation payoffs 𝑤,

the vector of agents’ expected payoffs is defined by

𝐸(𝑎, 𝑏, 𝑤) := ((1− 𝛿)𝑣𝑗(𝑎, 𝑏) + 𝛿𝑃 𝑗(𝑎𝑗) · 𝑤)𝑗∈𝒵 .

10.1 Outer Approximation: Conceptual

We can now define the outer approximation B𝑜(𝒲).

• For each search subgradient ℎ𝑙 ∈ 𝐻 and each partition element 𝑄𝑘, let

𝑐𝑜+𝑙 (𝑘) := max
(𝑎,𝑏)∈𝐴×𝐵,𝜆∈𝑄𝑘,𝑤

[ℎ𝑙 · 𝐸(𝑎, 𝑏, 𝑤)],

s.t. 𝜆′ = 𝜆𝑃 (𝑎),

𝜆𝑏𝑇 ≤ 0,

𝑤 ∈ 𝒲̃(𝜆′, 𝑎),

(1− 𝛿)𝜆 · 𝑣(𝑎, 𝑏) + 𝛿𝜆′ · 𝑤 ≥ 𝜋̌𝑘,

(10.1)

• Then define

𝜔̄𝑜+
𝑘 (𝜆) :=

{︃⋂︀𝐿
𝑙=1{𝑧 |ℎ𝑙 · 𝑧 ≤ 𝑐𝑜+𝑙 (𝑘)}, if 𝜆 ∈ 𝑄𝑘,

∅, otherwise.

Note: Since 𝐴 × 𝐵 is a finite set of action profiles, we can evaluate the program (10.1) as a special class of a
nonlinear optimization problem–a nonseparable bilinear program (BLP)–for each fixed (𝑎, 𝑏) ∈ 𝐴×𝐵. Then we
can maximize over the set 𝐴×𝐵, by table look-up.

27



HARDPIG, Release 1.0a

10.2 Outer Approximation: Implementation

Now we deal with implementing the idea in Outer Approximation: Conceptual. The outer-approximation scheme
to construct B𝑜(𝒲𝑜) in the set of problems in (10.1) is computable by following the pseudocode below:

Pseudocode

Input: 𝐻, 𝑐, 𝜋̂, 𝑃𝑜𝑙𝑦

For each (𝑄𝑘, ℎ𝑙, 𝑎) ∈ 𝐷 ×𝐻 ×𝐴:

• Markov map 𝑃 ← 𝑃 (𝑎)
• Simplex 𝑇 ← 𝑃 (𝑄𝑘)
• Get Hit-and-Run uniform draws constrained to be in 𝑄𝑘: 𝑋 := {𝜆𝑛}𝑁𝑠𝑖𝑚

𝑛=1 ←
𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑙𝑦𝐹 𝑖𝑙𝑙(𝑁𝑠𝑖𝑚, 𝑇 )

• Get feasible set 𝐹 ← 𝐹 (𝐵,𝑄𝑘) := {(𝜆, 𝑏) ∈ 𝑄𝑘 ×𝐵 : 𝜆 ∈ 𝑋 ⊆ 𝑄𝑘,−𝜆𝑏𝑇 ≥ 0}
• Get I(𝑎, 𝑘) := {𝑘′ ∈ K : 𝑘′ ↦→ 𝑄𝑘′ ∈ 𝐷,𝑄𝑘′ ∩ 𝑇 ̸= ∅ }

– Uses: TriIndex from Simplex_IntersectPmap

For each 𝑘′ ∈ I(𝑎, 𝑘):

– Get relevant feasible policy set 𝐹 (𝑘′; 𝑎, 𝑘)← {(𝜆, 𝑏) ∈ 𝐹 : 𝜆𝑃 ∈ 𝑄𝑘′}
For each (𝜆, 𝑏) ∈ 𝐹 (𝑘′; 𝑎, 𝑘):
* Get current payoff profile 𝑣(𝑎, 𝑏)

* Solve conditional LP:

𝑐𝑜+(𝑄𝑘, ℎ𝑙, 𝑎, 𝑘
′, 𝜆, 𝑏) = max

𝑤
ℎ𝑙[(1− 𝛿)𝑣(𝑎, 𝑏) + 𝛿𝑃𝑤]

𝑠.𝑡.

𝐻𝑤 ≤ 𝑐𝑜(𝑄𝑘′ , ℎ𝑙)

𝛿[𝑝𝑗(𝑎′)− 𝑝𝑗(𝑎𝑗)] · 𝑤 ≤ (1− 𝛿)[𝜑(𝑎′)− 𝜑(𝑎𝑗)], ∀𝑗 ∈ 𝒵
−𝜆𝛿𝑃𝑤 ≤ 𝜆[(1− 𝛿)𝑣(𝑎, 𝑏)]− 𝜋̌(𝑄𝑘)

– Get 𝑐𝑜+(𝑄𝑘, ℎ𝑙, 𝑎, 𝑘
′) = max(𝜆,𝑏)∈𝐹 (𝑘′;𝑎,𝑘) 𝑐

𝑜
+(𝑄𝑘, ℎ𝑙, 𝑎, 𝑘

′, 𝜆, 𝑏).
• Get 𝑐𝑜+(𝑄𝑘, ℎ𝑙, 𝑎) = max𝑘′∈I(𝑎,𝑘) 𝑐

𝑜
+(𝑄𝑘, ℎ𝑙, 𝑎, 𝑘

′).
• Get 𝑐𝑜+(𝑄𝑘, ℎ𝑙) = max𝑎∈𝐴 𝑐𝑜+(𝑄𝑘, ℎ𝑙, 𝑎).

Note:
• In the pseudocode, we can see that for every fixed (𝑄𝑘, 𝑎, 𝑘

′) ∈ 𝐷 × 𝐴 × I(𝑎, 𝑘) and every feasible 𝑏, the
nested family of programming problems are nonseparable bilinear programs (BLP) in the variables (𝜆,𝑤).

• The inner most loop thus implements our Monte Carlo approach to approximately solve for an 𝜖-global
solution to the nonseparable BLPs.

• Conditional on each draw of 𝜆, this becomes a standard linear program (LP) in 𝑤 within each innermost
loop of the pseudocode.

• Given the set of subgradients 𝐻 , an outer-approximation update on the initial step correspondence𝒲𝑜, is
now sufficiently summarized by𝒲𝑜

+ = B𝑜(𝒲𝑜)← (𝐻, 𝑐𝑜+(𝑄𝑘, ℎ𝑙),𝒲𝑜).

28 Chapter 10. Computing approximate SSE payoffs
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Relevant functions I

Admit_Outer_LPset(self)
Returns:

•Cnew :
–A (𝐿 ×𝐾) numeric array containing elements 𝑐𝑜+(𝑄𝑘, ℎ𝑙) where 𝑘 ∈ K and ℎ𝑙 ∈ 𝐻 are,

respectively, a partition element of the correspondence domain 𝐷, and, search subgradient
in direction indexed by 𝑙 ∈ {1, ..., |𝐻|}.

See also:
Punish_Outer

10.3 Inner Approximation: Conceptual

We now define the inner approximation of the SSE value correspondence operator as B𝑖(𝒲) below.

• Denote 𝐻̃(𝑘) as a finite set of 𝐿̃(𝑘) spherical codes (to be used as approximation subgradients, where each
element is ℎ̃𝑙(𝑘) and ‖ℎ̃𝑙(𝑘)‖2 = 1 for all 𝑙 = 1, ..., 𝐿̃ and 𝑘 ∈ K.

• Assume an initial inner step-correspondence approximation of some convex-valued and compact-graph cor-
respondence

𝒲𝑖 :=
⋃︁

𝑄𝑘∈𝐷

⋂︁
ℎ̃𝑙(𝑘)∈𝐻̃(𝑘)

{︁
𝑧 ∈ R𝒵 : ℎ̃𝑙(𝑘)𝑧 ≤ 𝑐(𝑄𝑘, ℎ̃𝑙)

}︁
.

• Define another finite set of fixed 𝐿 search subgradients, made up also of spherical codes, 𝐻 , just as in the
outer approximation method above. 1

• For each search subgradient ℎ𝑙 ∈ 𝐻 and each partition element 𝑄𝑘, let

𝑉 𝑖+
𝑙 (𝑘) := min

𝜆∈𝑄𝑘

max
(𝑎,𝑏)∈𝐴×𝐵,𝑤

[ℎ𝑙 · 𝐸(𝑎, 𝑏, 𝑤)],

s.t. 𝜆′ = 𝜆𝑃 (𝑎),

𝜆𝑏𝑇 ≤ 0,

𝑤 ∈ 𝒲̃𝑖(𝜆′, 𝑎),

(1− 𝛿)𝜆 · 𝑣(𝑎, 𝑏) + 𝛿𝜆′ · 𝑤 ≥ 𝜋̂𝑘,

(10.2)

Set 𝑉 𝑖+
𝑙 (𝑘) = −∞ if the optimizer set is empty.

• In contrast to Outer Approximation: Conceptual, obtain the following additional step.

– Let (𝑎*𝑙 (𝑘), 𝑏*𝑙 (𝑘), 𝑤*
𝑙 (𝑘)) denote the maximizers in direction ℎ𝑙 and over domain partition

element 𝑄𝑘, that induce the level 𝑉 𝑖+
𝑙 (𝑘) above.

– Then the corresponding vector of agent payoffs is

𝑧+𝑙 (𝑘) := 𝐸(𝑎*𝑙 (𝑘), 𝑏*𝑙 (𝑘), 𝑤*
𝑙 (𝑘)).

– Define the set of vertices 𝑍(𝑘) = {𝑧+𝑙 (𝑘) : 𝑙 = 1, ..., 𝐿} and let𝒲𝑖+(𝑘) = co(𝑍(𝑘)).

1 Note that we have to let the approximation subgradients 𝐻̃ to possibly vary with domain partition elements 𝑄𝑘 , as opposed to fixed
search subgradients in 𝐻 used in the optimization step. This is because the former is endogenously determined by the extra convex hull
operation taken to construct an inner step-correpondence 𝒲𝑖 at each successive evaluation of the operator B𝑖.

10.3. Inner Approximation: Conceptual 29
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• Update

𝑍+(𝑘) =
{︀
𝑧+𝑙 (𝑘) ∈ 𝑍(𝑘) : 𝑧+𝑙 (𝑘) ∈ 𝜕𝒲𝑖+(𝑘)

}︀
;

and find approximation subgradients 𝐻̃+(𝑘) = {ℎ̃+
1 (𝑘), ..., ℎ̃+

𝐿̃+
(𝑘)} and constants 𝐶+(𝑘) =

{𝑐+1 (𝑘), ..., 𝑐+
𝐿̃+

(𝑘)} such that

𝑐𝑜(𝑍+(𝑘)) =

𝐿̃+⋂︁
𝑙=1

{︁
𝑧 : ℎ̃+

𝑙 (𝑘)𝑧 ≤ 𝑐+𝑙 (𝑘)
}︁
,

and𝒲𝑖+ = ∪𝑘𝑐𝑜(𝑍+(𝑘)) = B𝑖(𝒲𝑖).

Note: As in the outer approximation methods, since 𝐴 × 𝐵 is a finite set of action profiles, we can evaluate the
program (10.2) as a special class of a nonlinear optimization problem–a nonseparable bilinear program (BLP)–
for each fixed (𝑎, 𝑏) ∈ 𝐴 × 𝐵. Then we can maximize over the set 𝐴 × 𝐵, by table look-up. Thus, the only
difference computationally in the inner approximation method is the extra step of summarizing each inner step-
correspondence𝒲𝑖+ by updates on:

• approximation subgradients in each 𝐻̃+(𝑘);

• levels in each 𝐶+(𝑘); and

• vertices, 𝑍+(𝑘),

for every 𝑘 ∈ K.

Relevant functions I

Admit_Inner_LPset(self)
Returns:

•Znew :
–A (𝐿 × 𝐾) numeric array containing elements 𝑧+𝑙 (𝑘) where 𝑘 ∈ K and 𝑙 ↦→ ℎ𝑙 ∈ 𝐻
are, respectively, a partition element of the correspondence domain 𝐷, and, approximation
subgradient in direction indexed by 𝑙 ∈ {1, ..., 𝐿}.

See also:
Punish_Inner
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CHAPTER

ELEVEN

SOFTWARE

HARDPIG relies on the following software:

• MATLAB (http://www.mathworks.com) platform

• YALMIP (http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Solvers.BMIBNB) BMIBNB global opti-
mization solver

– Bilinear Matrix Inequality Branch-and-Bound solver

• GNU GLPK (http://www.gnu.org/software/glpk/) linear programming solver (in ANSI C)

• SNOPT (http://www.sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm) general-purpose local opti-
mization solver (Fortran)

– MATLAB Executable binaries files (http://www.scicomp.ucsd.edu/ peg/Software.html) for up to 300
variables and 300 constraints available freely from Phillip E. Gill.

Source codes (in MATLAB) and executables (in C/Fortran) are available from the authors via email.

31
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INDICES AND TABLES

• genindex

• search
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